==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 19-OCT-99 1C55 . COMPND 2 MOLECULE: BUTANTOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: TITYUS SERRULATUS; . AUTHOR S.K.HOLADAY JR.,B.M.MARTIN,P.L.FLETCHER JR.,N.R.KRISHNA . 40 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3361.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 65.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 22.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 17.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A W 0 0 286 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -97.2 9.8 11.5 -2.8 2 2 A a - 0 0 44 1,-0.1 35,-0.0 3,-0.0 3,-0.0 -0.615 360.0-168.8-132.5-165.8 6.5 10.0 -1.5 3 3 A S S S+ 0 0 95 -2,-0.2 2,-2.3 35,-0.1 -1,-0.1 0.315 76.7 61.7-153.6 -57.7 4.6 9.6 1.8 4 4 A T S S+ 0 0 39 33,-0.1 34,-0.8 34,-0.0 2,-0.4 -0.196 80.1 122.1 -77.5 52.3 1.6 7.3 1.7 5 5 A a E -A 37 0A 39 -2,-2.3 2,-0.3 32,-0.2 32,-0.2 -0.929 51.0-147.1-117.7 139.3 3.9 4.3 0.8 6 6 A L E - 0 0 29 30,-2.0 -2,-0.0 -2,-0.4 30,-0.0 -0.729 18.2-132.1-101.9 153.4 4.2 1.1 2.8 7 7 A D E S+ 0 0 144 -2,-0.3 2,-0.6 28,-0.1 -1,-0.1 0.374 76.0 111.9 -82.8 8.8 7.4 -1.0 3.1 8 8 A L E S- 0 0 75 28,-0.3 28,-2.3 8,-0.1 2,-0.6 -0.708 72.9-128.0 -85.9 123.2 5.4 -4.1 2.3 9 9 A A E -A 35 0A 56 -2,-0.6 26,-0.3 26,-0.2 3,-0.2 -0.537 30.5-124.0 -69.9 115.4 6.2 -5.6 -1.1 10 10 A b + 0 0 31 24,-0.7 3,-0.1 -2,-0.6 -1,-0.1 0.127 65.3 119.4 -49.1 177.2 2.9 -5.9 -3.0 11 11 A G S S+ 0 0 74 24,-0.0 2,-0.4 1,-0.0 -1,-0.2 0.020 72.6 46.7 146.6 -28.1 2.0 -9.4 -4.3 12 12 A A > - 0 0 44 -3,-0.2 4,-1.8 1,-0.2 5,-0.3 -0.981 67.5-142.1-143.3 128.6 -1.3 -10.1 -2.5 13 13 A S H >> S+ 0 0 104 -2,-0.4 4,-2.9 1,-0.2 3,-1.1 0.982 103.5 45.9 -52.5 -68.8 -4.3 -7.8 -2.0 14 14 A R H 3> S+ 0 0 184 1,-0.3 4,-2.8 2,-0.2 -1,-0.2 0.872 108.5 59.5 -44.6 -40.6 -5.2 -8.8 1.6 15 15 A E H 34 S+ 0 0 118 1,-0.2 -1,-0.3 2,-0.2 -2,-0.2 0.929 117.8 29.8 -58.3 -42.5 -1.5 -8.5 2.5 16 16 A c H S+ 0 0 26 0, 0.0 4,-3.9 0, 0.0 5,-0.4 0.964 116.3 48.7 -70.6 -54.7 -1.8 -2.9 6.6 20 20 A d H X>S+ 0 0 3 -4,-1.6 5,-2.0 1,-0.3 4,-1.0 0.898 115.8 46.3 -54.4 -38.8 -3.0 0.0 4.4 21 21 A F H <5S+ 0 0 98 -4,-2.4 -1,-0.3 -5,-0.2 -3,-0.2 0.829 119.9 39.3 -74.7 -29.8 -6.4 -0.2 6.2 22 22 A K H <5S+ 0 0 176 -4,-1.3 -2,-0.2 -5,-0.3 -1,-0.2 0.751 124.7 37.8 -90.5 -25.4 -4.8 -0.4 9.6 23 23 A A H <5S+ 0 0 67 -4,-3.9 -3,-0.2 -5,-0.1 -2,-0.1 0.933 133.6 17.3 -90.0 -62.7 -2.0 2.1 9.0 24 24 A F T <5S- 0 0 96 -4,-1.0 -3,-0.2 -5,-0.4 -4,-0.1 0.919 103.7-119.3 -78.1 -42.7 -3.5 4.9 6.8 25 25 A G S -B 35 0A 94 3,-2.6 3,-2.7 -2,-0.9 -22,-0.2 -0.874 67.4 -0.7-109.7 140.0 4.3 0.6 -7.3 33 33 A N T 3 S- 0 0 96 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.876 130.5 -61.0 55.2 34.5 8.0 -0.3 -7.5 34 34 A N T 3 S+ 0 0 125 -3,-0.3 -24,-0.7 1,-0.2 2,-0.4 0.544 124.7 101.5 70.7 2.6 7.1 -3.8 -6.2 35 35 A K E < S-AB 9 32A 88 -3,-2.7 -3,-2.6 -26,-0.3 2,-0.5 -0.948 82.5-112.1-121.0 138.9 5.9 -2.0 -3.1 36 36 A c E - B 0 31A 9 -28,-2.3 -30,-2.0 -2,-0.4 2,-0.7 -0.523 31.4-162.9 -70.1 116.7 2.2 -1.3 -2.2 37 37 A R E -AB 5 30A 95 -7,-3.3 -7,-2.2 -2,-0.5 2,-0.3 -0.855 7.0-149.5-104.2 108.4 1.8 2.5 -2.4 38 38 A d E + B 0 29A 5 -34,-0.8 2,-0.3 -2,-0.7 -9,-0.3 -0.569 24.7 170.5 -76.8 133.8 -1.4 3.7 -0.6 39 39 A Y 0 0 91 -11,-1.7 -11,-0.0 -2,-0.3 -34,-0.0 -0.908 360.0 360.0-137.8 166.4 -3.0 6.8 -2.0 40 40 A T 0 0 160 -2,-0.3 -36,-0.0 -11,-0.0 -11,-0.0 -0.642 360.0 360.0-131.8 360.0 -6.2 8.8 -1.6