==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 23-DEC-99 1C6W . COMPND 2 MOLECULE: MAUROCALCIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.MOSBAH,R.KHARRAT,Z.FAJLOUN,J.-G.RENISIO,E.BLANC,J.- . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2857.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 45.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 121 0, 0.0 2,-0.2 0, 0.0 15,-0.0 0.000 360.0 360.0 360.0 54.3 2.2 -0.4 -1.8 2 2 A D + 0 0 50 12,-0.2 2,-1.9 2,-0.1 15,-1.8 -0.598 360.0 160.6-120.7 63.7 3.0 3.2 -1.3 3 3 A a - 0 0 105 13,-0.2 13,-0.1 -2,-0.2 12,-0.0 -0.430 25.8-175.4 -89.2 64.4 6.6 3.1 0.1 4 4 A L - 0 0 63 -2,-1.9 14,-0.1 11,-0.2 13,-0.1 -0.012 20.0-135.6 -55.0 164.1 7.2 6.7 -0.8 5 5 A P S S+ 0 0 111 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.894 73.8 32.9 -90.2 -87.9 10.7 8.3 -0.3 6 6 A H S S- 0 0 115 1,-0.1 2,-2.7 27,-0.0 26,-0.1 -0.206 100.2 -85.3 -70.3 162.4 10.7 11.7 1.3 7 7 A L - 0 0 56 24,-0.1 -1,-0.1 -3,-0.0 26,-0.1 -0.423 65.3-177.9 -71.3 69.6 8.1 12.9 3.9 8 8 A K - 0 0 87 -2,-2.7 24,-0.7 23,-0.2 2,-0.2 -0.248 33.7 -85.5 -70.3 158.5 5.7 14.0 1.2 9 9 A L E +A 31 0A 93 22,-0.2 2,-0.2 20,-0.1 22,-0.2 -0.453 57.0 163.3 -70.4 136.5 2.4 15.7 1.9 10 10 A b E -A 30 0A 1 20,-1.7 20,-2.5 18,-0.2 3,-0.1 -0.819 38.9-145.9-142.0 178.8 -0.6 13.4 2.6 11 11 A K S S+ 0 0 142 1,-0.4 2,-0.3 -2,-0.2 -1,-0.1 0.655 86.3 31.0-117.8 -42.9 -4.1 13.4 4.1 12 12 A E S > S- 0 0 101 1,-0.1 3,-0.8 18,-0.1 -1,-0.4 -0.830 77.5-122.2-118.6 156.9 -4.3 10.0 5.7 13 13 A N G > S+ 0 0 70 -2,-0.3 3,-2.5 1,-0.2 7,-0.3 0.926 106.5 71.4 -62.4 -46.9 -1.5 7.9 7.3 14 14 A K G 3 S+ 0 0 123 1,-0.3 -1,-0.2 5,-0.2 5,-0.2 0.730 74.5 89.1 -39.2 -32.5 -2.2 4.9 4.9 15 15 A D G < S+ 0 0 46 -3,-0.8 2,-0.3 3,-0.1 -1,-0.3 0.753 90.8 45.1 -39.2 -37.5 -0.7 7.1 2.2 16 16 A c S X S- 0 0 4 -3,-2.5 3,-1.4 -4,-0.1 -13,-0.2 -0.831 80.2-129.7-115.2 153.2 2.7 5.7 3.1 17 17 A a T 3 S+ 0 0 47 -15,-1.8 -14,-0.2 -2,-0.3 -1,-0.1 0.871 117.3 56.3 -62.5 -37.7 3.8 2.1 3.8 18 18 A S T 3 S- 0 0 84 -16,-0.3 -1,-0.3 -14,-0.1 -4,-0.1 0.506 95.1-157.6 -70.9 -6.1 5.4 3.5 7.0 19 19 A K < + 0 0 110 -3,-1.4 -5,-0.2 -6,-0.2 -6,-0.1 0.690 56.5 113.0 27.8 42.3 1.8 4.7 7.7 20 20 A K + 0 0 123 13,-1.7 13,-1.6 -7,-0.3 2,-0.5 -0.552 34.1 151.6-135.6 69.3 3.2 7.4 10.1 21 21 A b E -B 32 0A 4 11,-0.3 2,-0.3 -2,-0.1 11,-0.3 -0.869 22.5-167.5-103.1 133.9 2.4 10.7 8.3 22 22 A K E -B 31 0A 117 9,-1.9 9,-2.9 -2,-0.5 2,-0.4 -0.954 20.6-157.3-127.4 144.4 1.9 13.8 10.6 23 23 A R + 0 0 118 -2,-0.3 2,-1.1 7,-0.3 7,-0.1 -0.617 28.5 154.6-117.8 69.8 0.5 17.3 10.0 24 24 A R + 0 0 229 -2,-0.4 2,-0.2 5,-0.1 4,-0.1 -0.396 57.4 80.8 -96.0 56.8 2.0 19.5 12.8 25 25 A G S S- 0 0 48 -2,-1.1 -2,-0.1 2,-0.4 5,-0.0 -0.611 96.6 -94.5-138.2-167.0 1.5 22.5 10.6 26 26 A T S S+ 0 0 132 -2,-0.2 -1,-0.1 3,-0.0 -3,-0.0 0.913 104.1 59.2 -87.0 -54.1 -1.3 24.8 9.6 27 27 A N S S- 0 0 92 1,-0.1 -2,-0.4 2,-0.1 0, 0.0 -0.229 94.2-112.7 -71.0 164.6 -2.4 23.1 6.4 28 28 A I S S+ 0 0 102 -4,-0.1 -18,-0.2 2,-0.1 -1,-0.1 0.718 74.2 133.6 -70.8 -19.5 -3.6 19.4 6.4 29 29 A E - 0 0 76 -20,-0.1 2,-0.4 1,-0.1 -18,-0.2 -0.053 42.7-164.4 -38.4 97.6 -0.4 18.7 4.4 30 30 A K E -A 10 0A 25 -20,-2.5 -20,-1.7 -7,-0.1 -7,-0.3 -0.774 10.1-135.4 -92.0 131.0 0.7 15.7 6.4 31 31 A R E -AB 9 22A 82 -9,-2.9 -9,-1.9 -2,-0.4 2,-0.8 -0.678 21.6-111.3 -92.2 150.6 4.4 14.6 5.9 32 32 A c E B 0 21A 10 -24,-0.7 -11,-0.3 -2,-0.3 -24,-0.2 -0.699 360.0 360.0 -86.1 100.9 5.2 10.9 5.4 33 33 A R 0 0 170 -13,-1.6 -13,-1.7 -2,-0.8 -17,-0.1 -0.630 360.0 360.0-117.5 360.0 7.2 9.3 8.3