==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 27-MAR-00 1C7W . COMPND 2 MOLECULE: CALCIUM VECTOR PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BRANCHIOSTOMA LANCEOLATUM; . AUTHOR I.THERET,S.BALADI,J.A.COX,H.SAKAMOTO,C.T.CRAESCU . 68 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4956.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 61.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 5.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 44.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 87 A E > 0 0 151 0, 0.0 4,-1.6 0, 0.0 5,-0.3 0.000 360.0 360.0 360.0 -35.0 -2.3 10.9 10.1 2 88 A E H >> + 0 0 126 3,-0.2 4,-2.3 2,-0.2 3,-0.7 0.740 360.0 40.6 -65.8 -34.4 -2.5 13.8 7.5 3 89 A E H 3> S+ 0 0 118 1,-0.3 4,-2.1 2,-0.2 5,-0.2 0.430 122.1 36.6 -79.9 -57.3 -0.9 11.6 4.7 4 90 A I H 3>>S+ 0 0 23 2,-0.2 4,-2.1 1,-0.2 5,-0.6 0.922 121.2 47.2 -66.9 -51.0 -2.6 8.3 5.3 5 91 A L H S+ 0 0 67 -4,-1.6 4,-1.0 -3,-0.7 5,-0.6 0.898 108.5 58.1 -60.4 -39.4 -5.9 9.9 6.2 6 92 A R H X5S+ 0 0 111 -4,-2.3 4,-1.4 -5,-0.3 5,-0.2 0.973 116.8 31.2 -52.9 -60.0 -5.6 12.2 3.1 7 93 A A H X5S+ 0 0 49 -4,-2.1 4,-2.1 -5,-0.2 -2,-0.2 0.959 130.7 30.4 -69.8 -57.8 -5.4 9.2 0.7 8 94 A F H X5S+ 0 0 2 -4,-2.1 4,-2.1 1,-0.2 -3,-0.2 0.937 120.5 50.1 -68.2 -49.8 -7.5 6.4 2.3 9 95 A K H < -A 55 0A 62 -2,-0.4 4,-1.2 35,-0.2 35,-0.2 -0.687 33.7-108.6-115.1 170.4 -14.5 -2.5 -2.0 21 107 A F H > S+ 0 0 54 33,-1.1 4,-2.0 -2,-0.2 3,-0.2 0.946 115.3 45.3 -68.5 -50.1 -13.4 -3.1 -5.7 22 108 A D H > S+ 0 0 104 1,-0.2 4,-1.4 2,-0.2 -1,-0.2 0.885 113.9 49.9 -63.1 -37.0 -16.7 -2.2 -7.4 23 109 A E H > S+ 0 0 64 2,-0.2 4,-2.3 1,-0.2 -1,-0.2 0.768 106.5 56.1 -71.8 -24.0 -17.1 1.0 -5.3 24 110 A F H X S+ 0 0 19 -4,-1.2 4,-1.5 2,-0.2 -2,-0.2 0.936 105.6 52.1 -65.7 -48.7 -13.4 1.9 -6.2 25 111 A K H < S+ 0 0 60 -4,-2.0 -2,-0.2 1,-0.2 4,-0.2 0.833 110.3 49.6 -52.9 -39.2 -14.7 1.6 -9.9 26 112 A F H >X S+ 0 0 76 -4,-1.4 4,-0.7 1,-0.2 3,-0.6 0.956 115.7 39.6 -64.7 -55.1 -17.5 4.0 -8.9 27 113 A I H 3< S+ 0 0 56 -4,-2.3 -2,-0.2 1,-0.2 -1,-0.2 0.570 87.3 103.3 -73.2 -10.6 -15.2 6.6 -7.2 28 114 A M T 3< S- 0 0 27 -4,-1.5 -1,-0.2 1,-0.2 -2,-0.1 0.616 110.0 -25.3 -42.8 -32.0 -12.4 6.3 -9.9 29 115 A Q T <4 S+ 0 0 97 -3,-0.6 2,-0.2 -4,-0.2 -1,-0.2 0.387 119.4 24.2-151.9 -26.7 -13.3 9.5 -11.7 30 116 A K < - 0 0 39 -4,-0.7 2,-0.2 2,-0.1 -1,-0.2 -0.685 53.4-123.6-139.2-179.0 -16.9 10.4 -11.2 31 117 A V S S+ 0 0 135 -2,-0.2 2,-0.3 -3,-0.1 -4,-0.1 -0.757 99.7 2.1-146.1 84.0 -20.3 10.5 -9.5 32 118 A G S S+ 0 0 58 -2,-0.2 -2,-0.1 -6,-0.2 2,-0.0 -0.859 111.1 46.2 141.6-105.0 -22.6 9.2 -12.3 33 119 A E S S- 0 0 179 -2,-0.3 -1,-0.2 1,-0.1 -3,-0.1 -0.201 77.4-106.6 -75.9 161.5 -21.4 8.0 -15.7 34 120 A E + 0 0 103 -3,-0.1 2,-0.2 1,-0.1 -1,-0.1 -0.822 35.5 168.2 -93.5 125.2 -18.4 5.6 -16.5 35 121 A P + 0 0 70 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 -0.552 38.0 170.5-135.1 67.4 -15.2 7.2 -18.1 36 122 A L + 0 0 95 -2,-0.2 2,-0.4 4,-0.0 -2,-0.0 -0.541 54.1 175.1-120.8 164.5 -12.7 4.3 -17.8 37 123 A T > - 0 0 76 -2,-0.2 4,-0.9 1,-0.1 3,-0.3 -0.983 26.6-152.7-138.6 120.6 -9.6 2.3 -18.3 38 124 A D H > S+ 0 0 116 -2,-0.4 4,-2.9 1,-0.2 5,-0.2 0.845 86.1 68.8 -66.3 -37.2 -9.7 -0.9 -16.2 39 125 A A H > S+ 0 0 60 2,-0.2 4,-2.3 1,-0.2 5,-0.2 0.853 99.2 48.8 -53.5 -44.7 -5.9 -1.2 -15.8 40 126 A E H > S+ 0 0 103 -3,-0.3 4,-2.2 2,-0.2 -1,-0.2 0.950 116.8 40.8 -61.3 -49.7 -5.6 1.8 -13.5 41 127 A V H X S+ 0 0 8 -4,-0.9 4,-2.2 2,-0.2 -2,-0.2 0.896 116.8 48.7 -67.5 -42.1 -8.4 0.8 -11.2 42 128 A E H X S+ 0 0 73 -4,-2.9 4,-2.2 2,-0.2 -2,-0.2 0.937 112.8 47.4 -65.6 -48.7 -7.4 -3.0 -11.2 43 129 A E H X S+ 0 0 99 -4,-2.3 4,-2.3 -5,-0.2 -2,-0.2 0.941 112.3 50.1 -58.3 -49.6 -3.7 -2.2 -10.5 44 130 A A H X S+ 0 0 36 -4,-2.2 4,-1.7 -5,-0.2 -2,-0.2 0.911 113.3 43.6 -58.5 -48.4 -4.5 0.2 -7.6 45 131 A M H X S+ 0 0 8 -4,-2.2 4,-1.7 2,-0.2 -1,-0.2 0.836 111.3 54.7 -70.6 -32.4 -6.9 -2.1 -5.8 46 132 A K H < S+ 0 0 99 -4,-2.2 3,-0.2 2,-0.2 -2,-0.2 0.931 110.3 47.4 -60.8 -46.8 -4.6 -5.1 -6.2 47 133 A E H < S+ 0 0 148 -4,-2.3 -2,-0.2 1,-0.2 -1,-0.2 0.853 115.9 45.9 -59.2 -38.0 -1.8 -3.1 -4.5 48 134 A A H < S+ 0 0 15 -4,-1.7 2,-0.7 -5,-0.2 -2,-0.2 0.679 92.2 82.2 -83.8 -21.7 -4.1 -2.0 -1.7 49 135 A D < - 0 0 29 -4,-1.7 7,-0.1 -3,-0.2 -1,-0.0 -0.779 48.9-180.0 -89.3 117.1 -5.9 -5.3 -0.7 50 136 A E S S+ 0 0 99 -2,-0.7 -1,-0.1 5,-0.2 6,-0.1 0.731 75.0 46.2 -80.6 -28.6 -3.7 -7.4 1.7 51 137 A D S S- 0 0 120 4,-0.3 -1,-0.1 0, 0.0 5,-0.1 0.663 97.4-119.9 -96.0 -14.3 -6.0 -10.4 2.2 52 138 A G S S+ 0 0 72 3,-0.1 -2,-0.0 -6,-0.1 -3,-0.0 0.440 85.9 106.3 81.4 4.3 -7.3 -11.4 -1.2 53 139 A N S S- 0 0 93 2,-0.2 3,-0.1 0, 0.0 -4,-0.0 0.765 87.5-116.7 -81.7 -31.4 -11.0 -10.8 -0.2 54 140 A G S S+ 0 0 23 1,-0.4 -33,-1.1 -9,-0.1 2,-0.3 0.700 79.9 96.4 97.1 22.5 -11.6 -7.6 -2.2 55 141 A V E -A 20 0A 49 -35,-0.2 2,-0.4 -34,-0.1 -1,-0.4 -0.980 51.0-161.2-142.6 150.9 -12.3 -5.2 0.8 56 142 A I E -A 19 0A 1 -37,-2.2 -37,-2.4 -2,-0.3 2,-0.2 -0.993 8.6-169.3-142.2 131.4 -10.0 -2.8 2.6 57 143 A D E >> -A 18 0A 70 -2,-0.4 4,-1.1 -39,-0.2 3,-0.9 -0.667 47.1 -98.1-104.7 163.8 -10.1 -1.0 6.0 58 144 A I H 3> S+ 0 0 44 -41,-0.6 4,-2.1 -2,-0.2 5,-0.2 0.894 116.9 65.1 -57.0 -44.7 -7.6 1.8 6.8 59 145 A P H 3> S+ 0 0 85 0, 0.0 4,-1.5 0, 0.0 -1,-0.2 0.774 101.3 50.5 -48.1 -36.8 -5.2 -0.6 8.8 60 146 A E H X> S+ 0 0 30 -3,-0.9 4,-2.3 2,-0.2 3,-0.6 0.987 110.8 47.4 -62.6 -60.5 -4.3 -2.6 5.7 61 147 A F H 3X S+ 0 0 25 -4,-1.1 4,-1.7 1,-0.3 5,-0.2 0.876 112.3 49.8 -46.3 -51.9 -3.5 0.5 3.5 62 148 A M H 3X S+ 0 0 66 -4,-2.1 4,-2.4 2,-0.2 -1,-0.3 0.827 109.6 51.2 -63.9 -34.6 -1.3 2.0 6.2 63 149 A D H