==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE (O-GLYCOSYL) 30-MAY-89 1CBH . COMPND 2 MOLECULE: C-TERMINAL DOMAIN OF CELLOBIOHYDROLASE I; . SOURCE 2 ORGANISM_SCIENTIFIC: HYPOCREA JECORINA; . AUTHOR G.M.CLORE,A.M.GRONENBORN . 36 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2482.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 55.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 132 0, 0.0 2,-0.2 0, 0.0 18,-0.2 0.000 360.0 360.0 360.0 165.0 -7.6 6.0 1.6 2 2 A Q - 0 0 39 16,-2.6 18,-0.4 4,-0.1 2,-0.2 -0.591 360.0-130.1-106.9 171.6 -6.0 3.8 -1.0 3 3 A S > - 0 0 78 -2,-0.2 3,-1.7 16,-0.2 32,-0.2 -0.591 44.8 -62.7-114.2 178.7 -7.6 1.6 -3.6 4 4 A H T 3 S+ 0 0 86 1,-0.3 32,-0.2 -2,-0.2 -1,-0.2 -0.335 127.7 14.4 -61.6 141.1 -7.0 -2.1 -4.7 5 5 A Y T 3 S+ 0 0 144 30,-2.9 -1,-0.3 1,-0.2 2,-0.2 0.751 102.4 143.2 63.8 21.5 -3.4 -2.5 -6.0 6 6 A G < - 0 0 11 -3,-1.7 29,-1.4 29,-0.4 2,-0.8 -0.630 59.9-107.3 -94.6 153.3 -2.7 0.8 -4.4 7 7 A Q E +A 34 0A 60 -2,-0.2 27,-0.2 27,-0.2 3,-0.1 -0.677 42.2 164.2 -80.7 111.5 0.5 1.8 -2.7 8 8 A a E - 0 0 0 25,-2.3 2,-0.2 -2,-0.8 -1,-0.2 0.697 65.5 -5.7 -98.2 -23.0 -0.1 2.0 1.0 9 9 A G E +A 33 0A 15 24,-1.5 24,-1.8 17,-0.1 5,-0.1 -0.761 63.2 124.9-150.0-163.6 3.6 2.0 2.1 10 10 A G > - 0 0 20 22,-0.3 3,-2.0 -2,-0.2 21,-0.2 0.134 68.0 -67.9 109.6 134.0 7.2 1.6 1.0 11 11 A I T 3 S+ 0 0 108 1,-0.3 3,-0.1 19,-0.2 22,-0.1 -0.098 123.4 31.3 -48.7 150.1 10.2 4.0 1.5 12 12 A G T 3 S+ 0 0 82 1,-0.3 2,-0.5 20,-0.0 -1,-0.3 0.353 92.5 123.9 79.9 -8.5 9.9 7.2 -0.4 13 13 A Y < + 0 0 58 -3,-2.0 -1,-0.3 1,-0.1 -3,-0.1 -0.745 32.9 174.1 -89.3 126.8 6.1 7.0 0.0 14 14 A S + 0 0 125 -2,-0.5 -1,-0.1 -3,-0.1 3,-0.1 -0.224 47.4 97.6-123.1 42.8 4.4 10.0 1.7 15 15 A G S S- 0 0 26 1,-0.2 -13,-0.1 -7,-0.1 -2,-0.0 -0.687 82.7 -68.2-122.1 176.2 0.8 9.0 1.3 16 16 A P - 0 0 73 0, 0.0 -1,-0.2 0, 0.0 -2,-0.0 -0.223 32.8-152.9 -61.5 156.7 -1.9 7.4 3.5 17 17 A T + 0 0 86 2,-0.1 2,-0.7 -3,-0.1 -9,-0.1 0.183 57.6 111.8-119.5 15.3 -1.4 3.7 4.3 18 18 A V - 0 0 89 6,-0.1 -16,-2.6 17,-0.0 2,-0.1 -0.808 58.7-145.1 -94.7 113.7 -5.1 2.7 4.8 19 19 A b - 0 0 15 -2,-0.7 -16,-0.2 -18,-0.2 3,-0.1 -0.429 30.5 -91.5 -75.1 150.3 -6.2 0.3 2.0 20 20 A A > - 0 0 32 -18,-0.4 3,-1.8 1,-0.1 -1,-0.1 -0.102 61.6 -75.2 -54.2 159.0 -9.8 0.5 0.8 21 21 A S T 3 S+ 0 0 127 1,-0.2 -1,-0.1 -3,-0.1 3,-0.1 -0.213 121.6 32.0 -56.7 148.4 -12.2 -1.9 2.6 22 22 A G T 3 S+ 0 0 86 1,-0.3 -1,-0.2 -3,-0.1 2,-0.2 0.218 111.5 79.5 88.6 -17.1 -11.9 -5.5 1.6 23 23 A T < - 0 0 24 -3,-1.8 -1,-0.3 -4,-0.1 2,-0.3 -0.666 60.8-155.4-117.6 174.6 -8.1 -5.1 1.0 24 24 A T - 0 0 85 12,-3.3 12,-1.7 -2,-0.2 2,-0.4 -0.946 28.9 -95.2-144.4 163.9 -5.1 -5.0 3.2 25 25 A a E -B 35 0A 63 -2,-0.3 2,-0.5 10,-0.2 10,-0.2 -0.688 36.7-174.3 -87.7 133.5 -1.6 -3.6 3.0 26 26 A Q E -B 34 0A 88 8,-3.1 8,-1.4 -2,-0.4 2,-0.2 -0.955 24.4-129.2-130.8 114.7 1.2 -5.9 1.8 27 27 A V E -B 33 0A 113 -2,-0.5 6,-0.3 6,-0.3 -17,-0.0 -0.420 24.9-179.2 -61.2 122.3 4.8 -4.9 1.8 28 28 A L E - 0 0 99 4,-2.0 5,-0.2 1,-0.4 -1,-0.2 0.932 64.2 -27.0 -86.5 -63.7 6.2 -5.7 -1.6 29 29 A N E > S-B 32 0A 79 3,-2.4 3,-2.2 -18,-0.0 2,-0.4 -0.856 77.9 -80.5-139.7 176.7 9.8 -4.6 -1.1 30 30 A P T 3 S+ 0 0 90 0, 0.0 -19,-0.2 0, 0.0 3,-0.1 0.176 132.6 41.0 -68.5 25.0 11.7 -2.1 1.1 31 31 A Y T 3 S+ 0 0 160 -2,-0.4 2,-0.3 1,-0.3 -4,-0.0 0.213 118.0 37.0-152.3 11.9 10.5 0.6 -1.4 32 32 A Y E < - B 0 29A 57 -3,-2.2 -3,-2.4 2,-0.0 -4,-2.0 -0.860 49.4-173.4-170.4 130.8 7.0 -0.4 -2.2 33 33 A S E -AB 9 27A 7 -24,-1.8 -25,-2.3 -6,-0.3 -24,-1.5 -0.940 16.3-159.4-133.4 115.3 3.9 -1.8 -0.4 34 34 A Q E -AB 7 26A 44 -8,-1.4 -8,-3.1 -2,-0.4 2,-0.7 -0.532 16.9-124.2 -93.7 156.5 0.9 -2.8 -2.4 35 35 A b E B 0 25A 0 -29,-1.4 -30,-2.9 -10,-0.2 -29,-0.4 -0.870 360.0 360.0-102.4 114.1 -2.7 -3.2 -1.2 36 36 A L 0 0 81 -12,-1.7 -12,-3.3 -2,-0.7 -17,-0.1 -0.683 360.0 360.0-132.1 360.0 -4.3 -6.6 -1.9