==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE (O-GLYCOSYL) 30-MAY-89 2CBH . COMPND 2 MOLECULE: C-TERMINAL DOMAIN OF CELLOBIOHYDROLASE I; . SOURCE 2 ORGANISM_SCIENTIFIC: HYPOCREA JECORINA; . AUTHOR G.M.CLORE,A.M.GRONENBORN . 36 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2455.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 63.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 119 0, 0.0 2,-0.3 0, 0.0 18,-0.2 0.000 360.0 360.0 360.0 170.6 -7.2 6.0 2.1 2 2 A Q B -a 19 0A 46 16,-2.0 18,-2.2 13,-0.1 2,-0.1 -0.994 360.0-128.7-143.5 149.0 -5.9 4.0 -0.9 3 3 A S > - 0 0 77 -2,-0.3 3,-1.2 1,-0.2 32,-0.3 -0.395 48.2 -62.4 -93.9 174.0 -7.7 1.8 -3.4 4 4 A H T 3 S+ 0 0 84 1,-0.3 -1,-0.2 -2,-0.1 32,-0.2 -0.001 126.5 19.2 -47.8 158.8 -6.9 -1.8 -4.4 5 5 A Y T 3 S+ 0 0 148 30,-2.2 2,-0.4 1,-0.2 -1,-0.3 0.772 100.3 144.1 46.9 23.7 -3.5 -2.3 -6.1 6 6 A G < - 0 0 9 -3,-1.2 29,-1.6 29,-0.4 2,-1.0 -0.785 61.6-114.2 -99.1 135.1 -2.7 1.0 -4.4 7 7 A Q E +B 34 0B 61 -2,-0.4 27,-0.3 27,-0.2 3,-0.1 -0.480 41.3 168.0 -65.2 101.0 0.7 1.8 -2.9 8 8 A a E + 0 0 0 25,-2.0 2,-0.3 -2,-1.0 -1,-0.2 0.664 64.3 0.4 -89.9 -16.6 -0.1 2.0 0.8 9 9 A G E +B 33 0B 15 24,-1.6 24,-1.8 17,-0.1 -1,-0.1 -0.934 63.4 128.2-156.6-179.8 3.5 2.0 1.9 10 10 A G > - 0 0 20 22,-0.3 3,-2.7 -2,-0.3 21,-0.2 -0.130 63.4 -74.3 130.7 131.7 7.1 1.8 0.8 11 11 A I T 3 S+ 0 0 103 1,-0.3 3,-0.1 19,-0.2 22,-0.1 -0.113 122.8 27.5 -48.2 148.7 10.1 3.9 1.6 12 12 A G T 3 S+ 0 0 77 1,-0.3 -1,-0.3 20,-0.0 2,-0.3 0.284 95.5 125.6 79.1 -14.5 10.0 7.2 -0.2 13 13 A Y < + 0 0 68 -3,-2.7 -1,-0.3 1,-0.1 -3,-0.2 -0.585 35.2 179.0 -79.4 138.6 6.2 6.9 -0.1 14 14 A S + 0 0 120 -2,-0.3 -1,-0.1 -3,-0.1 -5,-0.1 -0.448 43.3 91.5-137.7 63.1 4.4 9.9 1.4 15 15 A G S S- 0 0 29 1,-0.2 -13,-0.1 -7,-0.1 -2,-0.0 -0.848 81.4 -61.7-143.6 179.0 0.6 9.1 1.2 16 16 A P - 0 0 68 0, 0.0 -1,-0.2 0, 0.0 -2,-0.0 -0.104 36.4-162.1 -58.9 166.1 -2.2 7.6 3.2 17 17 A T + 0 0 82 2,-0.1 2,-0.8 -15,-0.0 -9,-0.1 0.370 50.4 113.0-135.2 0.4 -1.8 3.9 4.0 18 18 A V - 0 0 97 6,-0.0 -16,-2.0 17,-0.0 3,-0.1 -0.674 61.2-140.8 -80.7 112.4 -5.3 2.7 4.9 19 19 A b B -a 2 0A 18 -2,-0.8 -16,-0.2 -18,-0.2 3,-0.1 -0.398 28.9 -94.0 -71.2 147.0 -6.3 0.3 2.2 20 20 A A > - 0 0 38 -18,-2.2 3,-2.0 1,-0.1 -1,-0.1 -0.317 59.5 -82.2 -58.6 142.2 -9.9 0.4 1.0 21 21 A S T 3 S+ 0 0 126 1,-0.2 -1,-0.1 -3,-0.1 -17,-0.1 -0.055 119.1 40.5 -44.9 146.2 -12.1 -2.1 2.9 22 22 A G T 3 S+ 0 0 88 1,-0.3 2,-0.3 -3,-0.1 -1,-0.2 0.051 108.2 73.2 99.6 -25.8 -11.8 -5.6 1.5 23 23 A T < - 0 0 28 -3,-2.0 -1,-0.3 -4,-0.1 2,-0.3 -0.791 63.7-151.9-119.3 163.0 -8.1 -5.3 0.9 24 24 A T - 0 0 90 -2,-0.3 12,-1.8 -3,-0.1 2,-0.6 -0.807 29.6 -97.0-126.6 169.7 -5.0 -5.3 3.1 25 25 A a E -C 35 0B 60 -2,-0.3 2,-0.6 10,-0.2 10,-0.2 -0.795 34.4-169.3 -95.3 120.6 -1.6 -3.8 2.9 26 26 A Q E -C 34 0B 60 8,-2.4 8,-1.3 -2,-0.6 2,-0.9 -0.916 18.0-140.2-110.7 113.8 1.2 -6.1 1.6 27 27 A V E -C 33 0B 106 -2,-0.6 6,-0.3 6,-0.2 -17,-0.1 -0.580 20.7-177.6 -72.3 106.3 4.8 -4.9 1.8 28 28 A L E - 0 0 95 4,-1.1 5,-0.2 -2,-0.9 -1,-0.2 0.976 64.0 -25.4 -70.0 -54.1 6.3 -6.0 -1.5 29 29 A N E > S-C 32 0B 83 3,-2.2 3,-2.3 0, 0.0 2,-0.5 -0.903 80.3 -77.6-150.2 174.6 9.8 -4.8 -0.8 30 30 A P T 3 S+ 0 0 90 0, 0.0 -19,-0.2 0, 0.0 3,-0.1 0.200 132.2 39.2 -68.6 24.4 11.6 -2.0 1.4 31 31 A Y T 3 S+ 0 0 160 -2,-0.5 2,-0.3 1,-0.3 -21,-0.0 0.164 116.9 43.0-154.3 17.6 10.4 0.5 -1.2 32 32 A Y E < + C 0 29B 67 -3,-2.3 -3,-2.2 2,-0.0 -4,-1.1 -0.871 45.7 177.2-170.2 132.0 7.0 -0.6 -2.2 33 33 A S E -BC 9 27B 4 -24,-1.8 -25,-2.0 -6,-0.3 -24,-1.6 -0.877 14.6-165.7-142.7 110.8 3.8 -1.9 -0.5 34 34 A Q E -BC 7 26B 35 -8,-1.3 -8,-2.4 -2,-0.4 2,-0.6 -0.704 23.1-121.8 -99.2 145.3 0.7 -2.6 -2.6 35 35 A b E C 0 25B 0 -29,-1.6 -30,-2.2 -2,-0.3 -29,-0.4 -0.743 360.0 360.0 -84.4 118.7 -2.8 -3.1 -1.2 36 36 A L 0 0 84 -12,-1.8 -11,-0.2 -2,-0.6 -1,-0.2 0.383 360.0 360.0-136.1 360.0 -4.0 -6.5 -2.3