==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT (HEME PROTEIN) 10-AUG-84 1CC5 . COMPND 2 MOLECULE: CYTOCHROME C5; . SOURCE 2 ORGANISM_SCIENTIFIC: AZOTOBACTER VINELANDII; . AUTHOR C.D.STOUT,D.C.CARTER . 83 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4559.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 67.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 8.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 9.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 34.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 5 6.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 A G 0 0 36 0, 0.0 7,-0.2 0, 0.0 74,-0.2 0.000 360.0 360.0 360.0-140.4 -19.4 -4.0 0.3 2 6 A G - 0 0 64 72,-0.2 70,-0.1 1,-0.1 69,-0.0 0.740 360.0 -98.9 -18.0-155.3 -18.4 -0.8 -1.6 3 7 A G + 0 0 54 68,-0.2 2,-1.7 4,-0.1 69,-0.2 0.692 59.8 131.1-132.8 -2.6 -15.0 -0.3 -3.1 4 8 A A S S- 0 0 18 67,-0.7 2,-1.6 1,-0.2 65,-0.1 -0.290 111.4 -36.1 -68.6 99.0 -12.0 1.5 -1.8 5 9 A R S S- 0 0 152 -2,-1.7 -1,-0.2 1,-0.1 4,-0.2 -0.445 112.9 -86.9 97.9 -53.6 -9.4 -1.1 -2.3 6 10 A S - 0 0 29 -2,-1.6 -2,-0.2 2,-0.1 -1,-0.1 -0.707 15.3-126.3 168.1-106.1 -12.1 -3.5 -1.4 7 11 A G S > S+ 0 0 0 -2,-0.2 4,-3.3 -4,-0.1 5,-0.3 -0.321 117.7 67.6 141.0 -28.5 -13.2 -4.7 2.0 8 12 A D H > S+ 0 0 113 2,-0.2 4,-1.9 -7,-0.2 -2,-0.1 0.987 113.3 28.0 -67.4 -61.2 -12.6 -8.0 0.1 9 13 A D H > S+ 0 0 92 -4,-0.2 4,-1.3 1,-0.2 5,-0.1 0.841 128.4 47.4 -61.8 -40.7 -9.0 -6.9 0.2 10 14 A V H >>S+ 0 0 2 2,-0.2 4,-1.8 1,-0.2 5,-1.8 0.852 111.5 46.4 -73.3 -41.3 -9.6 -4.9 3.4 11 15 A V H <>S+ 0 0 23 -4,-3.3 5,-1.8 3,-0.2 -2,-0.2 0.857 117.8 46.6 -68.2 -38.0 -11.5 -7.5 5.4 12 16 A A H <5S+ 0 0 68 -4,-1.9 -2,-0.2 -5,-0.3 -1,-0.2 0.729 117.9 38.3 -76.6 -25.5 -8.8 -10.1 4.4 13 17 A K H <5S- 0 0 140 -4,-1.3 -2,-0.2 -5,-0.1 -3,-0.2 0.691 139.7 -0.5-102.2 -23.8 -5.7 -8.0 5.1 14 18 A Y T <5S+ 0 0 75 -4,-1.8 3,-0.4 -5,-0.1 -3,-0.2 0.632 128.5 50.3-129.4 -50.3 -6.8 -6.2 8.3 15 19 A C T >>XS+ 0 0 58 -5,-1.8 4,-2.3 -6,-0.3 5,-0.6 0.878 72.0 77.8 -47.8 -56.5 -9.8 -10.9 9.2 17 21 A A H 345S+ 0 0 59 -3,-0.4 -1,-0.2 1,-0.2 5,-0.1 0.575 116.4 4.7 -37.0 -33.5 -8.0 -11.3 12.5 18 22 A C H <>>S+ 0 0 35 -3,-1.0 4,-1.0 3,-0.1 5,-0.7 0.652 127.2 55.1-126.2 -39.0 -11.0 -11.1 14.8 19 23 A H H <5S+ 0 0 22 -4,-1.5 10,-1.3 3,-0.2 -3,-0.2 0.728 103.9 58.9 -72.2 -26.3 -14.2 -10.9 12.6 20 24 A G T <5S+ 0 0 51 -4,-2.3 9,-0.2 -5,-0.3 -1,-0.2 0.988 124.3 17.7 -67.0 -62.1 -13.2 -14.1 10.7 21 25 A T T 4X5 + 0 0 15 -4,-1.0 3,-2.5 -5,-0.1 4,-0.5 0.202 49.7 179.3 141.2 18.4 -15.1 -14.1 16.2 23 27 A L T 34< + 0 0 93 -5,-0.7 3,-0.4 1,-0.3 -3,-0.0 -0.223 68.9 9.0 -50.5 119.9 -12.0 -13.6 18.4 24 28 A L T 34 S- 0 0 120 1,-0.2 -1,-0.3 2,-0.1 34,-0.1 0.477 134.3 -64.8 84.3 6.9 -12.7 -11.3 21.3 25 29 A N T <4 S+ 0 0 147 -3,-2.5 -2,-0.2 1,-0.3 -1,-0.2 0.644 82.4 173.0 85.5 24.4 -16.4 -11.5 20.5 26 30 A A < - 0 0 11 -4,-0.5 -1,-0.3 -3,-0.4 2,-0.2 -0.502 44.7-106.4 -63.1 118.7 -15.9 -9.7 17.2 27 31 A P - 0 0 16 0, 0.0 -1,-0.1 0, 0.0 -5,-0.1 -0.301 48.2-126.2 -51.2 112.3 -19.1 -9.7 15.3 28 32 A K > - 0 0 90 -2,-0.2 3,-0.7 1,-0.1 2,-0.4 -0.104 24.5 -84.0 -67.6 159.2 -18.3 -12.3 12.6 29 33 A V T 3 S+ 0 0 68 -10,-1.3 52,-0.2 1,-0.2 -1,-0.1 -0.550 108.5 11.4 -75.9 125.2 -18.6 -12.0 8.8 30 34 A G T 3 S+ 0 0 50 50,-2.9 2,-3.0 -2,-0.4 -1,-0.2 0.048 84.1 134.9 98.3 -19.1 -21.8 -12.5 7.0 31 35 A D <> + 0 0 64 -3,-0.7 4,-1.6 1,-0.2 5,-0.3 -0.325 30.8 179.7 -65.2 72.9 -23.6 -12.5 10.4 32 36 A S H > S+ 0 0 72 -2,-3.0 4,-1.1 1,-0.2 -1,-0.2 0.816 72.9 54.6 -42.6 -47.2 -26.4 -10.2 9.1 33 37 A A H >> S+ 0 0 60 2,-0.2 3,-2.0 1,-0.2 4,-1.2 0.987 104.8 46.1 -53.0 -79.0 -28.1 -10.2 12.5 34 38 A A H 3> S+ 0 0 28 1,-0.3 4,-0.6 2,-0.2 -1,-0.2 0.809 114.4 49.2 -33.1 -52.7 -25.3 -9.1 14.9 35 39 A W H 3X S+ 0 0 15 -4,-1.6 4,-1.9 46,-0.2 -1,-0.3 0.767 105.6 61.0 -64.8 -28.5 -24.3 -6.2 12.7 36 40 A K H X>S+ 0 0 7 -4,-1.9 5,-1.8 2,-0.2 3,-0.7 0.914 113.1 58.2 -56.8 -44.2 -26.4 -0.1 13.0 40 44 A D H ><5S+ 0 0 102 -4,-2.7 3,-1.1 1,-0.3 -2,-0.2 0.942 106.1 47.5 -45.1 -57.4 -29.7 0.2 14.8 41 45 A A H 3<5S+ 0 0 80 -4,-1.6 -1,-0.3 1,-0.2 -2,-0.2 0.725 121.5 34.8 -57.6 -33.1 -27.9 1.4 17.9 42 46 A K H <<5S- 0 0 92 -4,-1.4 -1,-0.2 -3,-0.7 -2,-0.2 0.036 116.3 -98.9-120.5 26.8 -25.7 4.0 16.1 43 47 A G T <<5S- 0 0 69 -3,-1.1 2,-0.2 -4,-0.6 -3,-0.2 0.825 72.8 -54.0 61.2 44.9 -28.0 5.2 13.3 44 48 A G S S+ 0 0 31 -2,-0.2 4,-0.7 1,-0.2 2,-0.5 0.442 128.0 67.9 -65.9 -2.6 -23.8 2.6 8.2 46 50 A D T 4 S+ 0 0 104 -3,-0.2 -1,-0.2 2,-0.2 28,-0.0 -0.922 88.8 55.2-125.9 93.7 -22.5 5.7 9.9 47 51 A G T 4 S+ 0 0 8 -2,-0.5 -2,-0.1 -4,-0.0 -1,-0.1 0.016 110.1 49.6 160.6 -10.4 -22.2 4.6 13.6 48 52 A L T > S+ 0 0 14 -4,-0.1 4,-3.4 3,-0.1 -2,-0.2 0.682 117.8 37.1-108.5 -42.7 -20.0 1.7 12.5 49 53 A L H X S+ 0 0 9 -4,-0.7 4,-2.1 2,-0.3 5,-0.2 0.914 120.8 45.0 -75.9 -46.9 -17.7 3.8 10.4 50 54 A A H > S+ 0 0 64 1,-0.2 4,-0.7 2,-0.2 -1,-0.2 0.789 119.4 50.1 -64.0 -24.3 -17.8 6.8 12.8 51 55 A Q H > S+ 0 0 26 2,-0.2 4,-3.0 3,-0.1 -2,-0.3 0.897 106.3 49.3 -78.5 -46.6 -17.4 3.9 15.3 52 56 A S H < S+ 0 0 9 -4,-3.4 10,-4.4 1,-0.2 11,-0.9 0.877 108.1 54.6 -62.3 -46.3 -14.4 2.0 13.8 53 57 A L H < S+ 0 0 57 -4,-2.1 -1,-0.2 9,-0.3 -2,-0.2 0.789 117.8 36.2 -52.7 -39.6 -12.3 5.2 13.4 54 58 A S H < S- 0 0 90 -4,-0.7 -2,-0.2 -3,-0.2 -1,-0.2 0.845 107.9-145.5 -80.3 -44.8 -12.8 5.9 17.1 55 59 A G < - 0 0 14 -4,-3.0 2,-0.3 5,-0.2 -3,-0.1 0.118 1.8-124.8 85.4 159.7 -12.7 2.2 18.1 56 60 A L B > -A 59 0A 71 3,-0.9 3,-2.0 -4,-0.1 2,-1.6 -0.890 53.1 -58.5-149.1 111.5 -14.6 0.5 20.9 57 61 A N T 3 S- 0 0 172 -2,-0.3 0, 0.0 1,-0.3 0, 0.0 -0.441 126.4 -1.5 62.3 -83.0 -13.1 -1.6 23.7 58 62 A A T 3 S+ 0 0 62 -2,-1.6 -1,-0.3 -34,-0.1 -32,-0.1 0.348 110.6 96.3-116.7 -11.1 -11.1 -4.4 22.1 59 63 A M B < S-A 56 0A 47 -3,-2.0 -3,-0.9 -35,-0.0 3,-0.1 -0.821 84.8-127.4 -79.9 115.2 -12.0 -3.4 18.6 60 64 A P - 0 0 62 0, 0.0 3,-0.4 0, 0.0 -5,-0.2 -0.501 33.4 -88.1 -70.7 144.4 -8.9 -1.4 17.8 61 65 A P S S+ 0 0 82 0, 0.0 -8,-0.3 0, 0.0 -7,-0.2 -0.181 106.9 21.3 -59.5 143.0 -9.5 2.2 16.5 62 66 A K S S- 0 0 49 -10,-4.4 2,-5.9 -11,-0.2 -9,-0.3 0.902 110.6 -92.0 66.8 49.1 -10.0 2.8 12.8 63 67 A G S S- 0 0 14 -11,-0.9 -1,-0.2 -3,-0.4 2,-0.2 -0.088 81.6 -93.0 56.3 -64.8 -10.9 -0.8 11.9 64 68 A T S S+ 0 0 57 -2,-5.9 2,-0.2 1,-0.5 -2,-0.1 -0.392 99.5 105.1 128.6 165.6 -7.2 -0.7 11.4 65 69 A a - 0 0 4 -2,-0.2 -1,-0.5 -51,-0.1 -51,-0.0 0.471 54.7-155.6 90.1 96.7 -5.1 -0.0 8.4 66 70 A A S S+ 0 0 85 -2,-0.2 -3,-0.1 1,-0.2 -4,-0.0 -0.028 91.2 68.0 -81.3 13.3 -4.3 3.4 9.8 67 71 A D S S+ 0 0 126 2,-0.1 -1,-0.2 0, 0.0 -2,-0.1 0.733 75.6 110.6 -99.3 -46.9 -3.8 3.9 6.0 68 72 A a - 0 0 5 -6,-0.1 2,-0.1 2,-0.1 -3,-0.1 0.116 62.1-134.0 -38.1 143.0 -7.4 3.5 4.9 69 73 A S > - 0 0 52 -65,-0.1 4,-0.8 1,-0.1 3,-0.2 -0.277 35.3-103.8 -86.4 179.4 -9.6 6.3 3.6 70 74 A D H > S+ 0 0 89 1,-0.2 4,-1.1 2,-0.2 5,-0.1 0.722 119.7 62.0 -76.3 -28.1 -13.1 6.5 5.1 71 75 A D H > S+ 0 0 82 1,-0.2 4,-0.7 2,-0.2 -67,-0.7 0.723 104.2 47.2 -69.0 -28.1 -14.6 5.0 1.9 72 76 A E H > S+ 0 0 16 -3,-0.2 4,-1.5 2,-0.2 -1,-0.2 0.768 106.1 56.7 -83.0 -35.3 -12.6 1.8 2.4 73 77 A L H < S+ 0 0 3 -4,-0.8 -2,-0.2 1,-0.2 -1,-0.2 0.801 110.7 46.3 -66.3 -30.2 -13.5 1.4 6.0 74 78 A K H X S+ 0 0 81 -4,-1.1 4,-3.0 2,-0.2 -1,-0.2 0.748 108.4 53.7 -84.8 -29.6 -17.2 1.5 5.0 75 79 A A H X S+ 0 0 2 -4,-0.7 4,-1.2 2,-0.2 -2,-0.2 0.759 111.0 46.8 -76.3 -26.7 -16.8 -0.9 2.1 76 80 A A H < S+ 0 0 1 -4,-1.5 -1,-0.2 2,-0.2 -2,-0.2 0.517 114.9 47.0 -89.9 -12.8 -15.2 -3.4 4.5 77 81 A I H >> S+ 0 0 6 2,-0.2 4,-2.0 -4,-0.2 3,-1.5 0.817 108.1 56.1 -90.6 -43.0 -18.1 -2.7 6.9 78 82 A G H 3X S+ 0 0 4 -4,-3.0 4,-1.7 1,-0.3 -2,-0.2 0.849 115.6 38.8 -53.1 -41.4 -20.5 -3.1 4.0 79 83 A K H 3< S+ 0 0 79 -4,-1.2 -1,-0.3 2,-0.2 -2,-0.2 0.177 112.9 50.7 -99.0 10.6 -19.0 -6.5 3.5 80 84 A M H <4 S+ 0 0 8 -3,-1.5 -50,-2.9 -51,-0.1 -49,-0.2 0.598 120.5 41.4 -99.8 -40.4 -18.5 -7.8 7.1 81 85 A S H < S- 0 0 0 -4,-2.0 2,-0.7 -52,-0.2 -46,-0.2 0.839 88.8-134.6 -65.5 -58.4 -22.1 -6.7 7.7 82 86 A G < 0 0 38 -4,-1.7 -1,-0.2 -5,-0.2 -51,-0.0 -0.776 360.0 360.0 114.0 -62.9 -24.4 -7.7 4.8 83 87 A L 0 0 138 -2,-0.7 -47,-0.1 -51,-0.2 -5,-0.1 -0.281 360.0 360.0 148.2 360.0 -25.5 -4.1 5.5