==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 25-FEB-94 1CCH . COMPND 2 MOLECULE: CYTOCHROME C551; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS STUTZERI; . AUTHOR M.CAI,R.TIMKOVICH . 82 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5607.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 51 62.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 13.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 35.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Q 0 0 212 0, 0.0 5,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -5.6 -5.1 1.6 16.3 2 2 A D + 0 0 154 3,-0.1 75,-0.1 2,-0.0 0, 0.0 -0.126 360.0 14.1-114.4 36.0 -7.7 1.4 13.5 3 3 A G S > S+ 0 0 6 74,-0.1 4,-1.3 73,-0.1 74,-0.1 0.189 120.5 54.1-169.3 -48.1 -5.4 1.4 10.5 4 4 A E H > S+ 0 0 90 1,-0.2 4,-1.1 2,-0.2 3,-0.1 0.913 103.8 58.3 -70.5 -42.3 -1.8 0.8 11.5 5 5 A A H >> S+ 0 0 52 1,-0.2 4,-1.4 2,-0.2 3,-0.7 0.888 103.0 55.0 -54.6 -40.4 -2.6 -2.5 13.3 6 6 A L H 3> S+ 0 0 53 1,-0.3 4,-2.4 2,-0.2 -1,-0.2 0.935 99.0 59.3 -59.8 -47.2 -4.0 -3.8 10.1 7 7 A F H 3< S+ 0 0 9 -4,-1.3 6,-0.7 2,-0.2 -1,-0.3 0.809 104.1 56.6 -51.7 -29.1 -0.8 -3.1 8.2 8 8 A K H << S+ 0 0 139 -4,-1.1 5,-0.3 -3,-0.7 -2,-0.2 1.000 108.4 39.3 -66.9 -71.4 0.8 -5.5 10.7 9 9 A S H < S+ 0 0 106 -4,-1.4 -1,-0.2 2,-0.1 -2,-0.2 0.789 105.4 86.8 -49.0 -27.3 -1.3 -8.6 10.2 10 10 A K S >< S- 0 0 26 -4,-2.4 3,-1.9 -5,-0.3 4,-0.2 -0.661 85.8-134.3 -80.1 125.6 -1.1 -7.7 6.5 11 11 A P T >> S+ 0 0 76 0, 0.0 4,-1.1 0, 0.0 3,-1.0 0.525 87.8 101.4 -54.2 -4.6 2.0 -9.1 4.9 12 12 A C H 3> S+ 0 0 27 1,-0.3 4,-2.8 2,-0.2 3,-0.2 0.797 77.7 55.8 -53.7 -27.2 2.3 -5.6 3.4 13 13 A A H <4 S+ 0 0 36 -3,-1.9 -1,-0.3 -6,-0.7 -5,-0.1 0.850 93.9 65.9 -74.7 -33.9 4.9 -5.0 6.1 14 14 A A H <4 S+ 0 0 79 -3,-1.0 -1,-0.2 -4,-0.2 -2,-0.2 0.860 125.1 13.8 -55.5 -35.7 7.0 -8.0 5.0 15 15 A C H < S+ 0 0 60 -4,-1.1 8,-1.6 -3,-0.2 9,-0.5 0.821 130.5 46.6-105.9 -51.2 7.7 -6.2 1.7 16 16 A H S < S- 0 0 39 -4,-2.8 2,-0.3 -5,-0.3 5,-0.2 -0.070 72.3-154.8 -79.9-172.4 6.6 -2.6 2.4 17 17 A S - 0 0 20 3,-0.2 10,-1.3 8,-0.1 11,-0.3 -0.895 21.3-138.0-153.0-179.7 7.5 -0.6 5.5 18 18 A V S S+ 0 0 63 -2,-0.3 -1,-0.1 8,-0.2 10,-0.1 0.707 101.6 10.4-116.6 -39.2 6.4 2.3 7.6 19 19 A D S S+ 0 0 124 9,-0.1 2,-0.1 8,-0.1 7,-0.0 0.053 136.5 14.8-129.2 24.3 9.6 4.3 8.4 20 20 A T S S- 0 0 99 5,-0.0 6,-0.4 0, 0.0 2,-0.2 -0.416 75.7-124.9-157.6-125.2 12.1 2.6 6.0 21 21 A K + 0 0 82 -5,-0.2 -5,-0.1 -2,-0.1 -3,-0.1 -0.864 23.1 174.4 168.0 160.0 11.7 0.3 3.0 22 22 A M S S- 0 0 153 2,-0.8 -6,-0.2 -7,-0.4 -7,-0.1 0.385 82.6 -9.3-148.9 -56.7 12.8 -3.1 1.5 23 23 A V S S+ 0 0 83 -8,-1.6 -7,-0.1 1,-0.3 -8,-0.1 0.714 124.4 34.8-119.0 -57.0 11.2 -4.0 -1.8 24 24 A G S S- 0 0 12 -9,-0.5 -2,-0.8 1,-0.1 -1,-0.3 -0.533 101.3 -77.0 -98.2 168.6 8.4 -1.5 -2.5 25 25 A P - 0 0 11 0, 0.0 5,-0.2 0, 0.0 -8,-0.1 -0.472 57.5-104.8 -64.7 123.8 8.2 2.2 -1.7 26 26 A A >> - 0 0 1 -6,-0.4 4,-2.6 -2,-0.3 3,-1.4 -0.207 30.8-111.9 -49.5 137.6 7.5 2.7 2.0 27 27 A L H 3> S+ 0 0 16 -10,-1.3 4,-2.7 1,-0.3 -1,-0.2 0.756 120.7 62.7 -44.7 -24.5 3.8 3.8 2.4 28 28 A K H 3> S+ 0 0 96 -11,-0.3 4,-1.2 2,-0.2 -1,-0.3 0.944 108.0 37.6 -68.8 -47.1 5.4 7.0 3.5 29 29 A E H <> S+ 0 0 88 -3,-1.4 4,-1.0 1,-0.2 -2,-0.2 0.843 119.5 49.9 -72.1 -32.5 7.1 7.6 0.2 30 30 A V H X S+ 0 0 14 -4,-2.6 4,-2.3 1,-0.2 3,-0.3 0.883 103.6 59.0 -72.4 -38.0 4.1 6.3 -1.7 31 31 A A H < S+ 0 0 5 -4,-2.7 -1,-0.2 -5,-0.3 -2,-0.2 0.858 106.4 48.8 -58.9 -35.0 1.7 8.5 0.3 32 32 A A H < S+ 0 0 68 -4,-1.2 4,-0.5 2,-0.2 -1,-0.3 0.792 108.9 53.6 -75.3 -27.1 3.6 11.5 -1.0 33 33 A K H < S+ 0 0 137 -4,-1.0 -2,-0.2 -3,-0.3 -1,-0.2 0.880 121.6 29.3 -74.2 -37.7 3.4 10.1 -4.5 34 34 A N S < S+ 0 0 29 -4,-2.3 6,-0.4 1,-0.1 -1,-0.2 0.198 95.0 102.7-104.8 14.8 -0.4 9.7 -4.3 35 35 A A S S+ 0 0 49 1,-0.2 3,-0.4 -5,-0.2 5,-0.2 0.995 81.2 45.2 -59.8 -68.7 -0.9 12.6 -1.9 36 36 A G S S+ 0 0 88 -4,-0.5 2,-1.1 1,-0.3 3,-0.2 0.829 112.5 58.4 -44.2 -34.9 -2.1 15.2 -4.3 37 37 A V > + 0 0 63 1,-0.2 3,-2.1 -4,-0.2 -1,-0.3 -0.481 65.1 165.8 -95.3 63.4 -4.4 12.4 -5.6 38 38 A E G > S+ 0 0 154 -2,-1.1 3,-0.9 -3,-0.4 -1,-0.2 0.805 75.7 64.3 -47.4 -30.0 -6.1 11.7 -2.3 39 39 A G G > S+ 0 0 58 1,-0.2 3,-0.6 -3,-0.2 4,-0.5 0.103 71.8 102.2 -82.0 25.4 -8.6 9.8 -4.5 40 40 A A G <> + 0 0 1 -3,-2.1 4,-2.4 -6,-0.4 -1,-0.2 0.551 54.3 87.0 -84.0 -6.9 -5.7 7.4 -5.4 41 41 A A H <> S+ 0 0 31 -3,-0.9 4,-2.0 1,-0.2 -1,-0.2 0.872 89.4 48.8 -59.6 -36.6 -7.1 4.9 -2.9 42 42 A D H <> S+ 0 0 118 -3,-0.6 4,-1.1 1,-0.2 -1,-0.2 0.873 110.8 49.7 -71.5 -36.4 -9.3 3.5 -5.7 43 43 A T H > S+ 0 0 68 -4,-0.5 4,-0.6 1,-0.2 -2,-0.2 0.854 110.1 51.4 -70.3 -33.6 -6.4 3.3 -8.1 44 44 A L H >X S+ 0 0 31 -4,-2.4 4,-2.0 1,-0.2 3,-1.4 0.920 101.4 59.8 -69.3 -43.2 -4.2 1.5 -5.5 45 45 A A H 3X S+ 0 0 18 -4,-2.0 4,-1.8 1,-0.3 5,-0.4 0.861 107.5 47.4 -52.6 -36.4 -6.9 -1.1 -4.9 46 46 A L H 3X S+ 0 0 97 -4,-1.1 4,-0.5 1,-0.2 -1,-0.3 0.681 114.0 47.8 -78.6 -17.0 -6.6 -2.0 -8.6 47 47 A H H << S+ 0 0 45 -3,-1.4 -2,-0.2 -4,-0.6 -1,-0.2 0.612 113.0 48.1 -96.1 -15.0 -2.9 -2.1 -8.2 48 48 A I H >< S+ 0 0 43 -4,-2.0 3,-1.0 2,-0.1 16,-0.9 0.924 116.2 37.6 -89.2 -53.9 -2.8 -4.2 -5.1 49 49 A K H 3< S+ 0 0 57 -4,-1.8 -3,-0.1 1,-0.3 -2,-0.1 0.949 131.2 31.8 -63.4 -49.4 -5.2 -7.0 -6.0 50 50 A N T 3< S- 0 0 126 -4,-0.5 -1,-0.3 -5,-0.4 -2,-0.1 0.130 113.4-127.7 -93.7 21.1 -4.0 -7.2 -9.6 51 51 A G < - 0 0 9 -3,-1.0 2,-0.3 11,-0.2 -1,-0.2 0.098 25.3-138.7 56.5 177.8 -0.5 -6.2 -8.6 52 52 A S + 0 0 27 9,-0.3 9,-1.8 7,-0.1 2,-0.3 -0.949 21.3 176.6-169.4 151.0 1.1 -3.2 -10.4 53 53 A Q + 0 0 116 -2,-0.3 0, 0.0 7,-0.2 0, 0.0 -0.905 59.2 51.0-150.7 176.5 4.5 -2.2 -11.8 54 54 A G S S+ 0 0 63 3,-1.7 -1,-0.0 -2,-0.3 -2,-0.0 0.160 90.7 90.2 75.7 -23.2 6.1 0.7 -13.7 55 55 A V S S- 0 0 73 2,-0.2 -1,-0.1 1,-0.1 -2,-0.1 0.760 114.5 -4.1 -75.9 -24.0 4.6 3.0 -11.1 56 56 A W S S- 0 0 91 1,-0.5 -3,-0.1 3,-0.1 -1,-0.1 0.573 129.9 -25.2-134.6 -43.8 7.7 2.6 -9.0 57 57 A G S S- 0 0 20 2,-0.2 -3,-1.7 0, 0.0 2,-0.9 -0.973 72.0 -79.2-165.9 170.9 10.1 0.2 -10.5 58 58 A P S S+ 0 0 126 0, 0.0 -5,-0.1 0, 0.0 0, 0.0 0.080 97.3 103.5 -67.6 27.2 10.4 -2.8 -12.9 59 59 A I - 0 0 113 -2,-0.9 -2,-0.2 -36,-0.1 -7,-0.1 -0.833 64.0-152.1-117.7 93.8 9.3 -5.0 -9.9 60 60 A P - 0 0 74 0, 0.0 -7,-0.2 0, 0.0 -9,-0.1 -0.347 18.5-123.6 -61.4 137.8 5.6 -6.0 -10.3 61 61 A M - 0 0 45 -9,-1.8 -9,-0.3 -14,-0.2 3,-0.1 -0.779 24.5-123.9 -90.9 123.2 3.8 -6.5 -7.0 62 62 A P - 0 0 91 0, 0.0 -11,-0.2 0, 0.0 2,-0.1 -0.275 36.6 -91.5 -61.9 146.8 2.3 -10.0 -6.7 63 63 A P - 0 0 99 0, 0.0 -14,-0.2 0, 0.0 -13,-0.1 -0.366 44.3-147.4 -60.9 133.4 -1.5 -10.1 -6.0 64 64 A N - 0 0 45 -16,-0.9 2,-3.0 -3,-0.1 -13,-0.1 -0.794 24.4-107.9-107.6 151.2 -2.2 -10.2 -2.2 65 65 A P S S+ 0 0 118 0, 0.0 2,-0.4 0, 0.0 -16,-0.1 -0.359 73.3 133.2 -70.6 62.2 -5.0 -12.0 -0.5 66 66 A V - 0 0 15 -2,-3.0 2,-0.1 -18,-0.0 -2,-0.1 -0.931 41.2-153.6-118.6 142.6 -6.7 -8.7 0.4 67 67 A T > - 0 0 74 -2,-0.4 4,-2.9 1,-0.0 5,-0.2 -0.382 38.3 -93.9-101.6-176.3 -10.4 -7.8 -0.1 68 68 A E H > S+ 0 0 134 2,-0.2 4,-2.0 3,-0.2 5,-0.2 0.819 123.7 56.6 -68.5 -29.4 -12.1 -4.5 -0.6 69 69 A E H > S+ 0 0 143 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.966 118.0 30.1 -66.8 -52.5 -12.7 -4.2 3.1 70 70 A E H > S+ 0 0 61 2,-0.2 4,-2.4 1,-0.2 5,-0.3 0.857 119.7 55.5 -75.3 -34.8 -9.1 -4.6 4.1 71 71 A A H X S+ 0 0 3 -4,-2.9 4,-1.2 2,-0.2 -2,-0.2 0.872 109.7 47.5 -65.4 -35.8 -7.8 -3.0 0.9 72 72 A K H X S+ 0 0 108 -4,-2.0 4,-1.6 -5,-0.2 -2,-0.2 0.977 114.8 43.1 -69.6 -55.7 -10.0 0.1 1.6 73 73 A I H >X S+ 0 0 45 -4,-1.9 4,-2.4 1,-0.3 3,-1.6 0.967 114.8 49.0 -54.1 -58.5 -8.9 0.5 5.2 74 74 A L H 3X S+ 0 0 14 -4,-2.4 4,-1.9 1,-0.3 -1,-0.3 0.825 111.5 52.3 -51.1 -32.0 -5.3 -0.1 4.5 75 75 A A H 3X S+ 0 0 4 -4,-1.2 4,-1.2 -5,-0.3 -1,-0.3 0.764 108.2 50.7 -76.3 -24.7 -5.7 2.4 1.7 76 76 A E H < S+ 0 0 16 -4,-1.9 3,-0.5 -5,-0.3 4,-0.4 0.885 110.7 45.9 -64.5 -37.7 -1.7 4.7 3.9 79 79 A L H 3< S+ 0 0 44 -4,-1.2 -1,-0.2 1,-0.2 -2,-0.2 0.753 114.9 47.9 -76.0 -23.2 -3.1 8.0 2.7 80 80 A S H 3< S+ 0 0 98 -4,-1.1 -1,-0.2 1,-0.2 -2,-0.2 0.431 82.7 100.0 -94.6 -0.1 -3.3 9.3 6.2 81 81 A L << 0 0 39 -4,-0.6 -1,-0.2 -3,-0.5 -2,-0.1 0.949 360.0 360.0 -48.8 -58.7 0.2 8.2 7.0 82 82 A K 0 0 220 -4,-0.4 -1,-0.1 -3,-0.2 -54,-0.1 -0.190 360.0 360.0 170.4 360.0 1.6 11.7 6.5