==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 09-NOV-94 1CHL . COMPND 2 MOLECULE: CHLOROTOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: LEIURUS QUINQUESTRIATUS; . AUTHOR G.LIPPENS,J.NAJIB,S.J.WODAK,A.TARTAR . 36 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3023.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 44.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 159 0, 0.0 33,-0.2 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 157.3 -4.5 0.5 7.7 2 2 A a B -A 33 0A 35 31,-1.4 31,-0.7 1,-0.3 14,-0.1 -0.517 360.0 -48.3-110.1-178.5 -1.1 -0.9 6.8 3 3 A M S S- 0 0 73 -2,-0.2 -1,-0.3 29,-0.1 30,-0.1 -0.035 73.3 -94.6 -44.8 155.5 2.5 0.5 7.0 4 4 A P - 0 0 73 0, 0.0 2,-0.2 0, 0.0 3,-0.1 0.296 37.1-107.7 -57.5-162.6 2.7 3.9 5.5 5 5 A b S S+ 0 0 13 25,-0.2 27,-0.1 1,-0.1 8,-0.1 -0.539 84.8 93.8-134.4 71.0 3.9 4.3 1.8 6 6 A F + 0 0 161 -2,-0.2 2,-0.4 6,-0.1 -1,-0.1 -0.081 56.5 102.9-150.9 40.8 7.4 5.7 1.7 7 7 A T S S- 0 0 67 -3,-0.1 4,-0.2 2,-0.0 0, 0.0 -0.952 81.0 -20.1-128.2 148.5 9.8 2.7 1.5 8 8 A T - 0 0 86 -2,-0.4 4,-0.1 1,-0.1 0, 0.0 -0.035 61.6-134.8 49.9-160.9 11.7 1.2 -1.4 9 9 A D S S+ 0 0 138 -3,-0.0 3,-0.5 3,-0.0 4,-0.3 0.326 92.4 48.1-157.0 -44.4 10.4 2.2 -4.9 10 10 A H S S+ 0 0 156 1,-0.2 -2,-0.1 2,-0.1 0, 0.0 0.421 125.5 31.7 -89.0 3.8 10.2 -0.8 -7.2 11 11 A Q S S+ 0 0 138 -4,-0.2 -1,-0.2 2,-0.0 0, 0.0 -0.245 86.8 98.9-155.0 58.1 8.4 -2.9 -4.4 12 12 A M S >> S+ 0 0 17 -3,-0.5 3,-1.1 -4,-0.1 4,-0.8 0.771 87.8 38.2-111.1 -54.0 6.3 -0.6 -2.2 13 13 A A H 3> S+ 0 0 56 -4,-0.3 4,-0.5 1,-0.2 5,-0.3 0.398 96.5 87.5 -80.2 7.3 2.7 -0.9 -3.5 14 14 A R H 34 S+ 0 0 157 1,-0.2 -1,-0.2 2,-0.1 -2,-0.1 0.654 105.7 20.8 -80.0 -12.6 3.4 -4.6 -4.0 15 15 A K H <> S+ 0 0 125 -3,-1.1 4,-1.8 3,-0.1 -2,-0.2 0.493 111.9 72.1-129.2 -12.9 2.4 -5.4 -0.4 16 16 A c H X S+ 0 0 2 -4,-0.8 4,-1.4 2,-0.2 3,-0.4 0.996 101.8 41.5 -69.2 -63.2 0.2 -2.3 0.6 17 17 A D H >X>S+ 0 0 31 -4,-0.5 4,-2.1 9,-0.3 5,-0.8 0.927 116.7 51.3 -49.6 -46.5 -2.9 -3.1 -1.5 18 18 A D H 345S+ 0 0 99 -5,-0.3 -1,-0.3 1,-0.2 -2,-0.2 0.896 98.1 66.3 -61.0 -37.5 -2.5 -6.8 -0.5 19 19 A a H 3<5S+ 0 0 71 -4,-1.8 -1,-0.2 -3,-0.4 -2,-0.2 0.916 110.3 36.8 -51.2 -41.9 -2.3 -5.7 3.2 20 20 A d H <<5S- 0 0 37 -4,-1.4 -1,-0.2 -3,-0.6 -2,-0.2 0.856 140.9 -73.7 -80.5 -34.6 -5.9 -4.6 2.9 21 21 A G T <5 - 0 0 38 -4,-2.1 -3,-0.2 -5,-0.2 2,-0.2 -0.039 62.9-116.3 171.3 -52.6 -7.0 -7.4 0.6 22 22 A G S -B 32 0A 106 3,-1.4 3,-1.3 -2,-1.0 -24,-0.1 -0.752 55.4 -71.4 -95.1 99.8 -3.0 7.4 0.1 30 30 A G T 3 S- 0 0 51 -2,-1.0 -25,-0.2 1,-0.3 2,-0.0 -0.320 114.1 -14.0 55.7-127.7 -0.7 10.3 0.9 31 31 A P T 3 S+ 0 0 112 0, 0.0 2,-0.3 0, 0.0 -1,-0.3 -0.178 131.0 67.4 -97.8 40.4 1.2 9.5 4.1 32 32 A Q E < S- B 0 29A 83 -3,-1.3 -3,-1.4 -28,-0.1 2,-0.5 -0.872 70.6-140.1-160.4 123.9 -1.1 6.6 5.0 33 33 A c E +AB 2 28A 0 -31,-0.7 -31,-1.4 -2,-0.3 2,-0.2 -0.730 37.7 159.4 -87.0 123.7 -1.7 3.2 3.4 34 34 A L E - B 0 27A 56 -7,-1.3 -7,-1.8 -2,-0.5 -14,-0.2 -0.766 39.2 -92.2-133.9-178.7 -5.4 2.2 3.4 35 35 A d 0 0 59 -9,-0.3 -9,-0.4 -2,-0.2 -10,-0.1 -0.333 360.0 360.0 -88.7 176.4 -7.9 -0.1 1.6 36 36 A R 0 0 240 -19,-0.1 -1,-0.2 -2,-0.1 -11,-0.1 -0.347 360.0 360.0 -56.7 360.0 -10.0 0.9 -1.4