==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSFER (IRON-SULFUR PROTEIN) 21-JUN-95 1CLF . COMPND 2 MOLECULE: FERREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: CLOSTRIDIUM PASTEURIANUM; . AUTHOR I.BERTINI,A.DONAIRE,B.A.FEINBERG,C.LUCHINAT,M.PICCIOLI, . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3304.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 45.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 10.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 14.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 7.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 32 0, 0.0 2,-0.2 0, 0.0 53,-0.1 0.000 360.0 360.0 360.0 155.1 -3.1 3.3 9.1 2 2 A Y - 0 0 79 52,-0.1 2,-0.3 51,-0.1 52,-0.2 -0.416 360.0-109.6-129.6-159.6 -1.6 -0.2 8.2 3 3 A K - 0 0 14 50,-0.3 50,-1.7 48,-0.2 2,-1.0 -0.826 31.5-106.5-128.3 161.8 1.4 -1.5 6.4 4 4 A I B -A 52 0A 2 -2,-0.3 25,-0.1 48,-0.3 50,-0.1 -0.900 56.9-151.7 -79.8 100.8 1.8 -3.1 3.2 5 5 A A > - 0 0 20 46,-3.1 3,-3.0 -2,-1.0 25,-0.2 -0.198 30.1 -82.5 -76.3 174.0 2.4 -6.5 4.9 6 6 A D T 3 S+ 0 0 141 1,-0.3 -1,-0.1 23,-0.1 45,-0.1 0.607 117.9 81.8 -54.3 -16.5 4.4 -9.5 3.6 7 7 A S T 3 S+ 0 0 64 44,-0.2 -1,-0.3 43,-0.1 44,-0.1 0.824 77.0 102.3 -51.3 -33.0 1.4 -10.6 1.6 8 8 A C < - 0 0 16 -3,-3.0 2,-0.4 43,-0.2 -4,-0.0 -0.303 55.4-167.1 -55.7 130.3 2.7 -8.0 -0.8 9 9 A V - 0 0 97 20,-0.1 2,-2.8 -2,-0.1 3,-0.3 -0.903 46.4 -98.8-102.2 150.1 4.7 -8.9 -4.0 10 10 A S S S+ 0 0 65 -2,-0.4 15,-0.0 1,-0.2 -2,-0.0 -0.353 73.9 141.8 -67.6 70.5 6.3 -5.9 -5.6 11 11 A C - 0 0 70 -2,-2.8 -1,-0.2 1,-0.1 18,-0.0 0.704 49.3-144.9 -91.2 -22.7 3.5 -5.6 -8.1 12 12 A G > + 0 0 30 -3,-0.3 2,-2.6 1,-0.1 3,-1.0 -0.021 60.6 121.1 90.0 -30.7 3.4 -1.7 -8.1 13 13 A A T 3 S+ 0 0 56 1,-0.2 -1,-0.1 2,-0.1 30,-0.1 -0.230 70.7 46.0 -79.1 56.5 -0.4 -1.4 -8.6 14 14 A C T >> S+ 0 0 12 -2,-2.6 4,-1.9 33,-0.1 3,-1.0 0.303 85.3 83.4-155.6 -31.7 -1.3 0.6 -5.4 15 15 A A T <4 S+ 0 0 22 -3,-1.0 8,-0.3 1,-0.3 3,-0.3 0.882 105.7 32.6 -36.0 -60.4 1.4 3.4 -5.2 16 16 A S T 34 S+ 0 0 89 -4,-0.4 -1,-0.3 1,-0.2 5,-0.1 0.601 111.2 68.9 -75.9 -15.2 -0.6 5.6 -7.6 17 17 A E T <4 S+ 0 0 86 -3,-1.0 -2,-0.2 3,-0.1 -1,-0.2 0.804 75.0 93.3 -81.4 -34.2 -3.9 4.2 -6.3 18 18 A C S >< S- 0 0 16 -4,-1.9 3,-1.8 -3,-0.3 5,-0.1 -0.477 75.8-139.9 -58.2 122.4 -3.6 5.9 -2.9 19 19 A P T 3 S+ 0 0 101 0, 0.0 -1,-0.2 0, 0.0 -3,-0.0 0.812 107.5 38.4 -54.1 -33.5 -5.5 9.3 -3.1 20 20 A V T 3 S- 0 0 72 18,-0.1 -2,-0.1 16,-0.0 -3,-0.1 0.321 107.1-128.2-101.1 7.4 -2.6 10.8 -1.0 21 21 A N < + 0 0 97 -3,-1.8 2,-1.2 1,-0.2 16,-0.1 0.800 52.4 157.3 49.1 35.2 0.1 8.7 -2.8 22 22 A A + 0 0 2 14,-0.1 11,-2.4 10,-0.1 2,-0.3 -0.138 43.1 87.9 -81.2 36.4 1.3 7.7 0.7 23 23 A I E +B 32 0B 8 -2,-1.2 2,-0.3 -8,-0.3 9,-0.2 -0.985 38.3 138.5-142.3 147.6 3.0 4.6 -0.8 24 24 A S E -B 31 0B 57 7,-1.5 7,-2.3 -2,-0.3 2,-0.4 -0.922 60.2 -74.4-169.8 174.2 6.3 3.5 -2.4 25 25 A Q E +B 30 0B 113 -2,-0.3 5,-0.2 5,-0.2 4,-0.1 -0.779 64.7 149.7 -85.4 128.7 8.7 0.5 -2.2 26 26 A G + 0 0 51 3,-2.0 -1,-0.2 -2,-0.4 4,-0.1 0.768 58.4 14.3-128.0 -67.9 10.5 0.7 1.2 27 27 A D S S- 0 0 84 2,-0.4 3,-0.1 3,-0.2 4,-0.1 0.888 128.9 -54.8 -99.0 -52.5 11.8 -2.2 3.3 28 28 A S S S+ 0 0 95 1,-0.3 3,-0.1 2,-0.2 -18,-0.0 0.161 125.0 31.5-141.8 -50.5 11.6 -4.9 0.6 29 29 A I S S- 0 0 26 1,-0.3 -3,-2.0 -25,-0.1 -2,-0.4 0.037 112.4 -45.2 -91.1-161.1 8.0 -4.8 -0.6 30 30 A F E -B 25 0B 25 -5,-0.2 -1,-0.3 -25,-0.2 2,-0.3 -0.287 61.2-165.3 -68.7 161.9 5.6 -1.9 -0.9 31 31 A V E -B 24 0B 32 -7,-2.3 -7,-1.5 -28,-0.1 2,-0.4 -0.906 10.6-135.3-145.9 162.8 5.4 0.5 2.1 32 32 A I E -B 23 0B 22 -2,-0.3 2,-2.2 -9,-0.2 -9,-0.3 -0.986 22.1-126.7-128.9 138.6 3.1 3.2 3.4 33 33 A D >> - 0 0 79 -11,-2.4 4,-2.5 -2,-0.4 3,-2.0 -0.602 38.2-174.6 -73.6 76.1 3.8 6.7 4.9 34 34 A A T 34 S+ 0 0 48 -2,-2.2 -1,-0.2 1,-0.3 -12,-0.0 0.793 77.1 59.6 -56.0 -33.0 1.6 5.4 7.8 35 35 A D T 34 S+ 0 0 151 1,-0.2 -1,-0.3 -3,-0.2 -2,-0.1 0.867 115.8 34.8 -43.9 -48.1 1.8 8.9 9.4 36 36 A T T <4 S+ 0 0 61 -3,-2.0 -2,-0.2 -14,-0.1 -1,-0.2 0.698 96.0 97.2 -98.8 -29.9 0.2 10.3 6.2 37 37 A C < - 0 0 20 -4,-2.5 2,-0.4 -15,-0.2 -5,-0.0 -0.425 58.9-156.5 -52.9 134.7 -2.1 7.4 5.3 38 38 A I - 0 0 126 -2,-0.1 2,-2.3 -37,-0.0 3,-0.2 -0.968 36.0-102.7-107.9 137.9 -5.7 8.0 6.5 39 39 A D + 0 0 89 -2,-0.4 -2,-0.0 1,-0.2 0, 0.0 -0.309 68.7 144.9 -61.0 74.1 -7.6 4.7 7.0 40 40 A C - 0 0 69 -2,-2.3 -1,-0.2 2,-0.2 2,-0.2 0.668 55.6-130.3 -96.6 -20.0 -9.6 5.1 3.7 41 41 A G S > S+ 0 0 34 1,-0.4 4,-2.6 -3,-0.2 5,-0.2 -0.133 71.9 115.9 92.5 -35.3 -9.9 1.5 2.5 42 42 A N T 4 S+ 0 0 56 2,-0.2 2,-2.3 1,-0.2 -1,-0.4 -0.142 75.2 34.5 -54.6 165.4 -8.6 2.3 -1.0 43 43 A C T > S+ 0 0 14 1,-0.2 4,-2.8 -3,-0.1 3,-0.5 -0.465 118.0 58.1 60.6 -57.6 -5.3 0.5 -1.6 44 44 A A T 4 S+ 0 0 36 -2,-2.3 -2,-0.2 1,-0.3 -1,-0.2 0.924 106.3 48.3 -62.4 -40.4 -6.8 -2.3 0.6 45 45 A N T < S+ 0 0 141 -4,-2.6 -1,-0.3 1,-0.2 -3,-0.2 0.801 117.2 42.1 -59.8 -37.3 -9.7 -2.6 -1.8 46 46 A V T 4 S+ 0 0 52 -3,-0.5 -2,-0.2 -5,-0.2 -1,-0.2 0.866 83.2 103.9 -85.9 -40.6 -7.3 -2.7 -4.9 47 47 A C >< - 0 0 22 -4,-2.8 3,-2.2 1,-0.2 -33,-0.1 -0.247 67.9-139.8 -54.7 118.8 -4.5 -5.0 -3.7 48 48 A P T 3 S+ 0 0 111 0, 0.0 -1,-0.2 0, 0.0 -40,-0.0 0.768 104.5 30.1 -45.1 -36.2 -4.9 -8.4 -5.5 49 49 A V T 3 S- 0 0 88 -40,-0.1 -2,-0.1 -42,-0.0 -5,-0.0 0.156 110.5-115.4-114.4 14.3 -3.9 -10.2 -2.2 50 50 A G < + 0 0 32 -3,-2.2 -43,-0.1 -6,-0.2 -6,-0.1 0.905 56.4 158.0 50.7 50.7 -5.2 -7.5 0.3 51 51 A A + 0 0 1 -8,-0.1 -46,-3.1 -44,-0.1 2,-2.0 0.668 40.1 101.3 -80.0 -23.8 -1.6 -6.7 1.6 52 52 A P B +A 4 0A 4 0, 0.0 2,-0.3 0, 0.0 -48,-0.3 -0.499 59.6 124.3 -60.1 82.3 -2.5 -3.2 3.0 53 53 A V - 0 0 64 -2,-2.0 -48,-0.5 -50,-1.7 -50,-0.3 -0.922 56.8 -74.1-159.8 153.2 -2.6 -4.8 6.5 54 54 A Q 0 0 130 -2,-0.3 -52,-0.1 -52,-0.2 -50,-0.0 -0.154 360.0 360.0 -90.0 149.7 -0.8 -3.8 9.5 55 55 A E 0 0 180 -50,-0.1 -50,-0.0 -2,-0.0 0, 0.0 -0.901 360.0 360.0-124.1 360.0 2.4 -3.7 11.4