==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CURAREMIMETIC PROTEIN 15-MAR-96 1CMR . COMPND 2 MOLECULE: CHARYBDOTOXIN, ALPHA CHIMERA; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.ZINN-JUSTIN,M.GUENNEUGUES,E.DRAKOPOULOU,B.GILQUIN,C.VITA, . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2681.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 38.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 101 0, 0.0 3,-0.1 0, 0.0 6,-0.0 0.000 360.0 360.0 360.0 176.8 -2.0 4.4 7.1 2 2 A T - 0 0 89 1,-0.6 2,-0.2 0, 0.0 0, 0.0 0.696 360.0 -44.8-105.5 -63.1 -0.3 7.9 7.2 3 3 A T S > S- 0 0 74 18,-0.0 3,-0.8 0, 0.0 -1,-0.6 -0.496 89.4 -52.8-139.2-150.7 -0.8 8.8 3.5 4 4 A S G > S+ 0 0 55 1,-0.2 3,-1.1 -2,-0.2 16,-0.1 0.670 124.5 71.6 -62.6 -27.2 -0.3 6.8 0.2 5 5 A K G 3 S+ 0 0 113 1,-0.2 3,-0.2 2,-0.2 -1,-0.2 0.431 87.5 60.4 -80.2 -4.9 3.4 5.9 1.3 6 6 A E G < S+ 0 0 93 -3,-0.8 -1,-0.2 1,-0.2 -2,-0.1 0.318 97.1 61.0-103.6 1.3 2.3 3.5 4.1 7 7 A b S < S+ 0 0 1 -3,-1.1 3,-0.3 13,-0.2 4,-0.3 0.161 90.1 71.8-107.9 10.7 0.6 1.3 1.4 8 8 A W S S+ 0 0 107 -3,-0.2 2,-0.2 1,-0.2 -2,-0.1 0.586 104.6 37.5 -96.2 -21.8 4.0 0.8 -0.3 9 9 A S S S+ 0 0 57 3,-0.1 -1,-0.2 -4,-0.1 10,-0.1 -0.673 101.3 77.5-131.6 68.6 5.2 -1.5 2.5 10 10 A V S S+ 0 0 52 -3,-0.3 -2,-0.1 8,-0.3 -3,-0.1 0.461 104.6 23.7-142.9 -52.0 2.0 -3.4 3.2 11 11 A c S > S+ 0 0 21 -4,-0.3 6,-1.5 7,-0.3 4,-0.7 0.214 119.2 63.2-107.5 5.2 1.5 -6.1 0.5 12 12 A Q T 4 S+ 0 0 95 4,-0.2 -1,-0.1 6,-0.2 -3,-0.1 0.665 108.9 40.7 -93.6 -29.8 5.2 -6.0 -0.2 13 13 A R T 4 S+ 0 0 205 3,-0.1 -2,-0.2 1,-0.0 -1,-0.1 0.355 127.8 33.9 -97.4 -4.1 5.8 -7.3 3.4 14 14 A L T 4 S+ 0 0 126 3,-0.0 -3,-0.2 0, 0.0 -2,-0.1 0.697 134.7 2.6-115.4 -55.7 2.9 -9.7 3.1 15 15 A H S < S- 0 0 109 -4,-0.7 -3,-0.1 -5,-0.0 -4,-0.0 0.372 92.6 -87.0-106.9-124.9 2.8 -10.8 -0.6 16 16 A N S S+ 0 0 162 -5,-0.2 -4,-0.2 -3,-0.1 2,-0.1 -0.162 80.7 112.3-154.2 38.0 5.3 -9.8 -3.4 17 17 A T - 0 0 35 -6,-1.5 14,-0.2 1,-0.2 -9,-0.0 -0.226 49.6-141.8-112.2-165.1 3.9 -6.6 -4.8 18 18 A S + 0 0 56 12,-1.9 -8,-0.3 1,-0.3 -7,-0.3 0.468 53.4 19.6-125.9-105.4 5.0 -2.9 -4.8 19 19 A K + 0 0 123 12,-0.1 11,-2.4 10,-0.1 2,-0.3 0.093 48.5 162.3 -85.1-178.3 3.1 0.4 -4.5 20 20 A G - 0 0 3 9,-0.2 2,-0.3 -16,-0.1 9,-0.2 -0.961 24.1-134.3-178.3 178.3 -0.3 1.5 -3.2 21 21 A W - 0 0 126 7,-0.4 7,-2.5 -2,-0.3 2,-0.5 -0.943 28.3-110.5-150.2 160.7 -2.4 4.5 -2.1 22 22 A a E +A 27 0A 38 -2,-0.3 5,-0.2 5,-0.2 2,-0.2 -0.876 32.9 172.9-106.7 121.9 -4.6 4.9 0.9 23 23 A D E > -A 26 0A 69 3,-2.0 3,-0.8 -2,-0.5 -2,-0.0 -0.523 50.6 -96.8-105.9 178.0 -8.4 5.2 0.6 24 24 A H T 3 S+ 0 0 208 1,-0.2 3,-0.1 -2,-0.2 -2,-0.0 0.166 121.9 58.8 -89.8 17.4 -10.9 5.3 3.6 25 25 A R T 3 S- 0 0 182 1,-0.5 2,-0.3 0, 0.0 -1,-0.2 0.436 122.2 -83.9-114.3 -16.4 -11.5 1.5 3.3 26 26 A G E < -A 23 0A 31 -3,-0.8 -3,-2.0 2,-0.0 -1,-0.5 -0.936 69.3 -26.4 144.5-161.5 -7.9 0.5 3.7 27 27 A b E -A 22 0A 35 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.746 48.6-138.9 -90.3 135.6 -4.7 0.3 1.6 28 28 A I - 0 0 34 -7,-2.5 2,-0.5 -2,-0.4 -7,-0.4 -0.692 17.5-152.2 -84.9 138.2 -4.7 -0.4 -2.2 29 29 A c + 0 0 48 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.975 15.3 179.9-126.2 113.6 -2.0 -2.9 -3.3 30 30 A E 0 0 88 -11,-2.4 -12,-1.9 -2,-0.5 -19,-0.1 -0.853 360.0 360.0-112.3 148.6 -0.6 -2.6 -6.9 31 31 A S 0 0 145 -2,-0.3 -14,-0.1 -14,-0.2 -12,-0.1 -0.531 360.0 360.0 -84.8 360.0 2.1 -4.9 -8.3