==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION REGULATOR/DNA 24-MAR-08 3CMY . COMPND 2 MOLECULE: PAIRED BOX PROTEIN PAX-3; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR G.BIRRANE,J.A.A.LADIAS,A.SONI . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5228.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 63.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 35 58.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A G 0 0 131 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 5.4 2.2 -14.6 7.9 2 1 A Q - 0 0 173 1,-0.1 2,-0.2 3,-0.0 3,-0.0 -0.337 360.0-153.7 -57.8 134.3 4.8 -12.7 9.7 3 2 A R - 0 0 213 1,-0.1 3,-0.1 -2,-0.1 -1,-0.1 -0.678 31.7 -78.9-106.8 161.4 4.7 -8.9 9.1 4 3 A R - 0 0 178 -2,-0.2 -1,-0.1 1,-0.1 3,-0.1 -0.364 56.2-104.5 -56.1 137.0 7.5 -6.3 9.3 5 4 A S - 0 0 105 1,-0.1 -1,-0.1 -3,-0.0 -3,-0.0 -0.374 46.5 -88.1 -63.5 142.4 8.2 -5.3 12.8 6 5 A R - 0 0 240 1,-0.1 2,-0.2 -3,-0.1 -1,-0.1 -0.324 46.5-127.1 -55.0 126.8 6.8 -1.8 13.8 7 6 A T - 0 0 64 -3,-0.1 2,-0.5 38,-0.0 -1,-0.1 -0.546 14.7-145.9 -75.8 139.6 9.4 0.8 12.9 8 7 A T - 0 0 128 -2,-0.2 2,-0.4 0, 0.0 -1,-0.0 -0.957 12.8-145.6-106.8 126.7 10.5 3.2 15.6 9 8 A F - 0 0 51 -2,-0.5 2,-0.1 1,-0.0 0, 0.0 -0.736 11.2-126.4 -95.7 137.7 11.4 6.8 14.5 10 9 A T > - 0 0 65 -2,-0.4 4,-2.4 1,-0.1 3,-0.5 -0.376 28.9-111.7 -72.7 156.7 14.0 8.9 16.1 11 10 A A H > S+ 0 0 60 1,-0.3 4,-1.6 2,-0.2 -1,-0.1 0.903 121.0 54.8 -59.1 -34.0 13.0 12.3 17.3 12 11 A E H > S+ 0 0 126 1,-0.2 4,-1.7 2,-0.2 -1,-0.3 0.817 106.5 47.8 -70.2 -34.9 15.2 13.6 14.5 13 12 A Q H > S+ 0 0 29 -3,-0.5 4,-2.3 2,-0.2 -1,-0.2 0.912 109.1 54.3 -74.6 -40.1 13.5 11.6 11.8 14 13 A L H X S+ 0 0 64 -4,-2.4 4,-3.0 1,-0.2 5,-0.3 0.861 104.8 56.5 -60.6 -34.4 10.1 12.7 13.0 15 14 A E H X S+ 0 0 105 -4,-1.6 4,-2.3 -5,-0.2 -1,-0.2 0.975 109.0 43.7 -62.0 -55.7 11.3 16.3 12.7 16 15 A E H X S+ 0 0 37 -4,-1.7 4,-1.8 1,-0.2 -1,-0.2 0.852 116.4 48.9 -55.2 -39.7 12.1 15.9 9.1 17 16 A L H X S+ 0 0 0 -4,-2.3 4,-2.0 2,-0.2 -2,-0.2 0.930 112.4 45.1 -71.5 -45.0 8.9 14.0 8.4 18 17 A E H X S+ 0 0 59 -4,-3.0 4,-1.5 1,-0.2 -1,-0.2 0.846 111.1 56.8 -69.8 -30.0 6.6 16.5 10.2 19 18 A R H X S+ 0 0 137 -4,-2.3 4,-0.8 -5,-0.3 -1,-0.2 0.915 108.8 45.0 -66.3 -42.8 8.5 19.3 8.4 20 19 A A H >X S+ 0 0 16 -4,-1.8 4,-2.3 1,-0.2 3,-0.6 0.865 110.1 54.3 -67.9 -36.3 7.7 17.8 5.1 21 20 A F H 3< S+ 0 0 7 -4,-2.0 -1,-0.2 1,-0.3 -2,-0.2 0.815 100.9 60.1 -71.6 -29.4 4.1 17.2 6.0 22 21 A E H 3< S+ 0 0 167 -4,-1.5 -1,-0.3 1,-0.2 -2,-0.2 0.824 110.2 42.6 -68.2 -29.9 3.7 20.8 6.9 23 22 A R H << S- 0 0 226 -4,-0.8 2,-0.3 -3,-0.6 -2,-0.2 0.874 134.4 -5.7 -83.8 -42.1 4.7 21.6 3.3 24 23 A T < - 0 0 51 -4,-2.3 -1,-0.3 1,-0.1 -2,-0.0 -0.965 44.1-152.2-160.4 141.6 2.6 19.0 1.6 25 24 A H S S+ 0 0 48 -2,-0.3 29,-0.1 1,-0.3 -4,-0.1 0.650 100.4 43.1 -85.8 -17.0 0.4 16.0 2.7 26 25 A Y S S- 0 0 158 -5,-0.1 -1,-0.3 28,-0.0 2,-0.1 -0.634 78.7-170.9-132.4 69.8 1.1 14.2 -0.6 27 26 A P - 0 0 6 0, 0.0 23,-0.0 0, 0.0 -6,-0.0 -0.376 23.0-120.4 -65.4 139.7 4.8 14.5 -1.4 28 27 A D > - 0 0 81 1,-0.1 4,-2.6 -2,-0.1 5,-0.2 -0.122 33.1 -92.9 -73.2 175.0 5.8 13.3 -4.9 29 28 A I H > S+ 0 0 71 1,-0.2 4,-2.2 2,-0.2 5,-0.2 0.850 125.9 54.8 -60.2 -35.0 8.3 10.5 -5.5 30 29 A Y H > S+ 0 0 177 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.937 111.1 43.5 -65.2 -44.4 11.1 13.1 -5.8 31 30 A T H > S+ 0 0 58 1,-0.2 4,-2.1 2,-0.2 -2,-0.2 0.912 113.0 51.2 -69.6 -42.0 10.3 14.6 -2.4 32 31 A R H X S+ 0 0 45 -4,-2.6 4,-2.0 1,-0.2 -1,-0.2 0.891 110.9 49.3 -65.6 -38.0 9.8 11.2 -0.7 33 32 A E H X S+ 0 0 101 -4,-2.2 4,-2.0 2,-0.2 -1,-0.2 0.910 112.3 46.2 -67.2 -44.1 13.2 9.9 -2.0 34 33 A E H X S+ 0 0 131 -4,-2.0 4,-2.3 1,-0.2 -1,-0.2 0.869 114.3 49.4 -70.0 -29.6 15.2 13.0 -0.9 35 34 A L H X S+ 0 0 11 -4,-2.1 4,-1.8 2,-0.2 -1,-0.2 0.863 107.6 53.5 -76.3 -37.0 13.5 12.8 2.4 36 35 A A H X>S+ 0 0 4 -4,-2.0 5,-2.9 -5,-0.2 4,-0.9 0.926 111.1 48.1 -61.1 -39.9 14.2 9.2 2.8 37 36 A Q H ><5S+ 0 0 155 -4,-2.0 3,-0.7 1,-0.2 -2,-0.2 0.946 112.3 46.4 -68.9 -51.2 17.9 9.9 2.1 38 37 A R H 3<5S+ 0 0 168 -4,-2.3 -1,-0.2 1,-0.2 -2,-0.2 0.812 118.8 42.5 -55.2 -35.8 18.1 12.8 4.6 39 38 A A H 3<5S- 0 0 7 -4,-1.8 -1,-0.2 -5,-0.1 -2,-0.2 0.489 107.7-121.1 -98.1 -6.2 16.3 10.8 7.3 40 39 A K T <<5S+ 0 0 188 -4,-0.9 2,-0.3 -3,-0.7 -3,-0.2 0.956 72.5 125.0 56.0 48.8 18.1 7.6 6.7 41 40 A L < - 0 0 29 -5,-2.9 -1,-0.3 -6,-0.2 2,-0.2 -0.865 66.5-103.6-119.9 164.0 14.9 5.8 5.9 42 41 A T > - 0 0 85 -2,-0.3 4,-1.7 1,-0.1 5,-0.1 -0.538 30.8-118.5 -77.0 154.7 13.6 3.8 2.9 43 42 A E H > S+ 0 0 39 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.850 116.0 59.6 -64.4 -27.4 11.2 5.5 0.6 44 43 A A H > S+ 0 0 41 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.925 103.8 47.6 -66.4 -42.5 8.8 2.8 1.5 45 44 A R H > S+ 0 0 53 1,-0.2 4,-2.3 2,-0.2 -1,-0.2 0.892 111.8 51.8 -67.9 -34.6 8.9 3.7 5.2 46 45 A V H X S+ 0 0 0 -4,-1.7 4,-1.9 1,-0.2 -2,-0.2 0.932 108.9 49.4 -68.1 -43.9 8.4 7.4 4.2 47 46 A Q H X S+ 0 0 99 -4,-2.4 4,-1.7 1,-0.2 -1,-0.2 0.890 111.7 48.8 -62.3 -43.7 5.4 6.7 2.1 48 47 A V H X S+ 0 0 67 -4,-2.2 4,-2.2 1,-0.2 5,-0.2 0.932 108.6 54.2 -64.2 -42.0 3.7 4.6 4.8 49 48 A W H X S+ 0 0 23 -4,-2.3 4,-1.8 1,-0.2 -2,-0.2 0.886 107.4 50.6 -58.9 -38.2 4.4 7.3 7.4 50 49 A F H X S+ 0 0 1 -4,-1.9 4,-2.0 2,-0.2 -1,-0.2 0.878 108.4 51.5 -72.7 -35.4 2.7 9.9 5.2 51 50 A S H X S+ 0 0 57 -4,-1.7 4,-1.6 1,-0.2 -1,-0.2 0.939 113.8 44.3 -63.1 -45.4 -0.4 7.7 4.8 52 51 A N H X S+ 0 0 106 -4,-2.2 4,-1.7 1,-0.2 -2,-0.2 0.797 111.4 53.6 -72.2 -28.4 -0.7 7.3 8.5 53 52 A R H X S+ 0 0 35 -4,-1.8 4,-1.4 -5,-0.2 -1,-0.2 0.851 106.1 52.3 -75.2 -36.5 -0.0 10.9 9.2 54 53 A R H X S+ 0 0 43 -4,-2.0 4,-2.0 2,-0.2 5,-0.2 0.901 107.0 54.1 -65.1 -38.6 -2.8 12.0 6.9 55 54 A A H X S+ 0 0 42 -4,-1.6 4,-1.5 1,-0.2 -2,-0.2 0.942 108.4 48.5 -62.1 -44.8 -5.1 9.6 8.8 56 55 A R H X S+ 0 0 133 -4,-1.7 4,-0.9 1,-0.2 -1,-0.2 0.827 109.2 54.4 -63.6 -29.3 -4.1 11.3 12.1 57 56 A W H < S+ 0 0 120 -4,-1.4 -1,-0.2 1,-0.2 3,-0.2 0.905 111.8 41.9 -76.4 -38.6 -4.8 14.7 10.6 58 57 A R H < S+ 0 0 155 -4,-2.0 -1,-0.2 1,-0.2 -2,-0.2 0.710 104.6 66.2 -79.4 -25.2 -8.3 13.9 9.5 59 58 A K H < 0 0 82 -4,-1.5 -1,-0.2 -5,-0.2 -2,-0.2 0.834 360.0 360.0 -69.0 -30.3 -9.0 12.1 12.8 60 59 A Q < 0 0 177 -4,-0.9 -3,-0.1 -3,-0.2 -4,-0.0 0.111 360.0 360.0 -34.5 360.0 -8.7 15.4 14.5