==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ALPHA-HELICAL BUNDLE 10-AUG-96 1COI . COMPND 2 MOLECULE: COIL-VALD; . SOURCE 2 ORGANISM_SCIENTIFIC: SYNTHETIC CONSTRUCT; . AUTHOR N.L.OGIHARA,M.S.WEISS,W.F.DEGRADO,D.EISENBERG . 29 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3224.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 86.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 79.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E > 0 0 207 0, 0.0 4,-2.4 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 -39.3 11.9 5.2 11.2 2 2 A V H > + 0 0 103 2,-0.2 4,-2.2 1,-0.2 5,-0.1 0.962 360.0 47.3 -63.4 -45.9 12.6 8.9 11.7 3 3 A E H > S+ 0 0 143 1,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.877 112.2 52.2 -60.4 -38.3 9.0 9.7 12.8 4 4 A A H > S+ 0 0 48 1,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.923 109.1 48.9 -64.8 -42.8 9.2 6.7 15.2 5 5 A L H X S+ 0 0 93 -4,-2.4 4,-2.3 1,-0.2 -1,-0.2 0.856 106.4 58.4 -63.4 -35.2 12.5 8.0 16.6 6 6 A E H X S+ 0 0 127 -4,-2.2 4,-2.2 2,-0.2 -1,-0.2 0.894 107.1 46.2 -60.0 -45.1 10.8 11.4 17.0 7 7 A K H X S+ 0 0 139 -4,-1.8 4,-1.8 2,-0.2 -2,-0.2 0.894 113.2 48.8 -65.4 -41.1 8.1 9.9 19.2 8 8 A K H X S+ 0 0 135 -4,-1.9 4,-1.9 1,-0.2 -2,-0.2 0.840 113.0 48.0 -66.1 -40.8 10.6 7.9 21.3 9 9 A V H X S+ 0 0 65 -4,-2.3 4,-2.4 2,-0.2 -2,-0.2 0.898 110.1 50.4 -68.4 -39.8 12.8 10.9 21.8 10 10 A A H X S+ 0 0 56 -4,-2.2 4,-1.6 2,-0.2 -2,-0.2 0.862 111.5 49.9 -64.6 -39.3 9.9 13.2 22.8 11 11 A A H X S+ 0 0 49 -4,-1.8 4,-2.5 2,-0.2 5,-0.2 0.936 110.5 50.0 -63.7 -46.7 8.7 10.6 25.4 12 12 A L H X S+ 0 0 105 -4,-1.9 4,-2.7 1,-0.2 5,-0.2 0.905 108.1 52.2 -60.1 -44.9 12.3 10.3 26.8 13 13 A E H X S+ 0 0 131 -4,-2.4 4,-2.0 1,-0.2 -1,-0.2 0.894 110.5 49.3 -58.7 -38.9 12.6 14.1 27.1 14 14 A S H X S+ 0 0 83 -4,-1.6 4,-1.9 2,-0.2 -2,-0.2 0.941 113.9 44.8 -64.9 -46.3 9.3 14.2 29.0 15 15 A K H X S+ 0 0 136 -4,-2.5 4,-2.5 1,-0.2 -2,-0.2 0.844 112.9 50.9 -65.9 -40.4 10.4 11.3 31.4 16 16 A V H X S+ 0 0 79 -4,-2.7 4,-2.5 2,-0.2 -1,-0.2 0.883 108.2 51.4 -68.7 -36.4 13.9 12.8 31.9 17 17 A Q H X S+ 0 0 132 -4,-2.0 4,-1.6 -5,-0.2 -2,-0.2 0.919 112.6 46.4 -67.5 -40.5 12.5 16.2 32.8 18 18 A A H X S+ 0 0 58 -4,-1.9 4,-2.3 1,-0.2 3,-0.3 0.966 113.5 48.7 -66.1 -45.5 10.1 14.7 35.4 19 19 A L H X S+ 0 0 103 -4,-2.5 4,-2.4 1,-0.2 5,-0.2 0.879 106.6 56.7 -58.1 -45.0 13.0 12.5 36.8 20 20 A E H X S+ 0 0 128 -4,-2.5 4,-1.8 1,-0.2 -1,-0.2 0.893 111.2 43.4 -53.9 -42.9 15.3 15.5 37.1 21 21 A K H X S+ 0 0 124 -4,-1.6 4,-1.4 -3,-0.3 -2,-0.2 0.876 110.3 54.8 -72.4 -38.9 12.7 17.3 39.3 22 22 A K H >X S+ 0 0 157 -4,-2.3 4,-0.8 1,-0.2 3,-0.6 0.950 113.1 42.6 -58.5 -53.3 11.9 14.2 41.4 23 23 A V H >X S+ 0 0 72 -4,-2.4 4,-2.4 1,-0.2 3,-1.1 0.881 105.0 64.3 -63.2 -36.5 15.5 13.8 42.3 24 24 A E H 3< S+ 0 0 89 -4,-1.8 -1,-0.2 1,-0.3 -2,-0.2 0.828 99.0 55.3 -55.4 -36.4 16.0 17.6 42.8 25 25 A A H << S+ 0 0 89 -4,-1.4 -1,-0.3 -3,-0.6 -2,-0.2 0.820 112.1 44.1 -65.8 -31.3 13.5 17.3 45.7 26 26 A L H << S+ 0 0 147 -3,-1.1 2,-0.3 -4,-0.8 -2,-0.2 0.825 124.9 14.3 -83.0 -38.4 15.8 14.6 47.2 27 27 A E S < S+ 0 0 141 -4,-2.4 -1,-0.3 1,-0.2 0, 0.0 -0.999 111.1 12.2-147.3 151.3 19.1 16.2 46.7 28 28 A H 0 0 171 -2,-0.3 -1,-0.2 1,-0.2 -2,-0.1 0.991 360.0 360.0 50.1 90.1 20.8 19.5 45.8 29 29 A G 0 0 114 -3,-0.1 -1,-0.2 -4,-0.1 -4,-0.1 -0.748 360.0 360.0 113.9 360.0 18.1 22.2 46.1