==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 17-MAY-05 2COB . COMPND 2 MOLECULE: LCOR PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.NAMEKI,T.UMEHARA,M.SATO,S.KOSHIBA,M.INOUE,A.TANAKA, . 70 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6811.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 37.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 123 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-179.9 -21.4 -7.5 -18.8 2 2 A S + 0 0 129 1,-0.1 2,-0.1 0, 0.0 0, 0.0 -0.246 360.0 169.3 51.4-146.2 -20.6 -7.2 -15.1 3 3 A S + 0 0 126 1,-0.2 2,-0.2 0, 0.0 -1,-0.1 0.071 28.6 95.1 101.0 149.4 -18.5 -9.9 -13.3 4 4 A G - 0 0 67 -2,-0.1 -1,-0.2 1,-0.1 2,-0.1 -0.463 42.1-155.4 122.6 160.7 -17.0 -9.6 -9.8 5 5 A S + 0 0 117 -2,-0.2 2,-0.3 0, 0.0 -1,-0.1 -0.409 36.9 139.7-166.1 89.0 -18.1 -10.6 -6.3 6 6 A S + 0 0 126 -2,-0.1 4,-0.1 0, 0.0 2,-0.1 -0.890 16.5 87.6-127.0 161.9 -16.6 -8.5 -3.5 7 7 A G + 0 0 45 2,-0.7 0, 0.0 3,-0.3 0, 0.0 -0.217 59.9 48.7 129.3 157.3 -17.7 -7.0 -0.2 8 8 A R S S- 0 0 240 -2,-0.1 2,-0.2 2,-0.0 0, 0.0 0.982 117.1 -67.7 47.0 74.4 -18.2 -7.5 3.6 9 9 A G S S+ 0 0 38 1,-0.1 -2,-0.7 -3,-0.0 3,-0.0 -0.450 79.8 155.4 49.2-115.1 -14.7 -8.9 4.1 10 10 A R + 0 0 191 -2,-0.2 -3,-0.3 -4,-0.1 -1,-0.1 0.956 69.7 8.2 60.3 99.3 -14.9 -12.3 2.2 11 11 A Y S S- 0 0 169 1,-0.1 2,-0.1 -5,-0.1 -4,-0.1 0.185 80.3-136.1 64.3 155.2 -11.4 -13.1 1.2 12 12 A R + 0 0 230 -3,-0.0 2,-0.3 2,-0.0 -1,-0.1 -0.588 56.9 96.6-148.0 73.2 -8.7 -10.9 2.8 13 13 A Q - 0 0 138 -2,-0.1 2,-0.3 29,-0.0 29,-0.1 -0.963 50.0-143.1-159.9 153.9 -5.9 -9.8 0.3 14 14 A Y - 0 0 70 -2,-0.3 2,-0.2 27,-0.1 27,-0.1 -0.915 19.0-123.4-123.2 144.4 -5.1 -6.8 -1.9 15 15 A N > - 0 0 100 -2,-0.3 4,-1.8 1,-0.1 3,-0.2 -0.572 32.8-110.6 -76.8 154.6 -3.5 -6.6 -5.4 16 16 A S H > S+ 0 0 103 1,-0.2 4,-0.7 2,-0.2 -1,-0.1 0.703 124.0 55.9 -58.7 -19.4 -0.4 -4.5 -5.7 17 17 A E H >> S+ 0 0 153 2,-0.2 4,-1.3 1,-0.1 3,-0.8 0.922 103.1 51.2 -72.2 -54.1 -2.7 -2.2 -7.8 18 18 A I H 3> S+ 0 0 55 1,-0.3 4,-2.1 -3,-0.2 -2,-0.2 0.808 103.9 60.9 -55.5 -37.2 -5.3 -1.9 -4.9 19 19 A L H 3X S+ 0 0 10 -4,-1.8 4,-0.9 1,-0.2 -1,-0.3 0.898 100.8 52.0 -59.8 -41.4 -2.4 -0.8 -2.6 20 20 A E H S+ 0 0 24 -4,-2.5 5,-3.2 2,-0.2 6,-0.4 0.967 113.8 43.9 -52.3 -58.1 -6.4 8.5 -1.2 26 26 A V H ><5S+ 0 0 19 -4,-0.7 3,-1.2 3,-0.2 -2,-0.2 0.907 114.9 48.7 -55.1 -49.0 -4.4 8.9 2.1 27 27 A M H 3<5S+ 0 0 75 -4,-2.9 -2,-0.2 1,-0.3 -1,-0.2 0.961 110.8 49.8 -58.9 -53.2 -1.7 11.1 0.3 28 28 A S T 3<5S- 0 0 93 -4,-2.8 -1,-0.3 -5,-0.2 -2,-0.2 0.497 121.4-111.2 -61.8 -7.3 -4.4 13.3 -1.3 29 29 A G T < 5S+ 0 0 58 -3,-1.2 -3,-0.2 -4,-0.4 -2,-0.1 0.692 79.0 132.9 82.4 18.9 -6.0 13.6 2.2 30 30 A K S - 0 0 71 -2,-0.2 4,-2.2 -3,-0.1 5,-0.3 -0.682 45.2 -90.1-116.5 175.6 -5.7 8.5 6.9 33 33 A V H > S+ 0 0 25 -2,-0.2 4,-2.8 1,-0.2 5,-0.2 0.936 124.9 49.2 -51.6 -56.1 -3.8 5.2 7.1 34 34 A S H > S+ 0 0 69 2,-0.2 4,-1.2 1,-0.2 -1,-0.2 0.881 114.1 46.3 -56.0 -43.9 -6.2 3.7 9.7 35 35 A K H >> S+ 0 0 115 2,-0.2 4,-1.7 1,-0.2 3,-0.8 0.993 116.4 40.2 -62.6 -69.2 -9.2 4.7 7.7 36 36 A A H 3X S+ 0 0 0 -4,-2.2 4,-3.0 1,-0.2 5,-0.4 0.795 105.4 68.1 -54.0 -35.6 -8.1 3.5 4.1 37 37 A Q H 3X>S+ 0 0 56 -4,-2.8 4,-1.7 -5,-0.3 5,-1.5 0.938 109.0 36.6 -44.6 -55.4 -6.5 0.3 5.6 38 38 A S H <<5S+ 0 0 89 -4,-1.2 -1,-0.2 -3,-0.8 -2,-0.2 0.878 116.9 52.6 -70.7 -39.4 -10.0 -0.9 6.5 39 39 A I H <5S+ 0 0 105 -4,-1.7 -2,-0.2 1,-0.2 -1,-0.2 0.915 121.3 30.6 -62.2 -46.3 -11.7 0.5 3.3 40 40 A Y H <5S- 0 0 71 -4,-3.0 -1,-0.2 -5,-0.1 -2,-0.2 0.649 108.1-118.0 -92.9 -18.1 -9.3 -1.1 0.9 41 41 A G T <5 + 0 0 45 -4,-1.7 -3,-0.2 -5,-0.4 -4,-0.1 0.716 63.3 145.8 84.8 26.5 -8.5 -4.3 3.0 42 42 A I < - 0 0 4 -5,-1.5 -1,-0.3 -6,-0.4 2,-0.2 -0.692 56.6-106.5 -90.5 143.0 -4.7 -3.4 3.4 43 43 A P > - 0 0 61 0, 0.0 4,-2.8 0, 0.0 3,-0.2 -0.516 25.1-130.4 -61.7 141.3 -2.8 -4.2 6.6 44 44 A H H > S+ 0 0 65 1,-0.2 4,-3.1 2,-0.2 5,-0.2 0.937 107.0 54.0 -59.5 -49.5 -2.1 -1.1 8.6 45 45 A S H > S+ 0 0 97 1,-0.2 4,-1.4 2,-0.2 -1,-0.2 0.824 114.1 43.6 -59.9 -33.9 1.6 -1.9 9.0 46 46 A T H > S+ 0 0 39 -3,-0.2 4,-3.0 2,-0.2 -2,-0.2 0.984 115.5 45.7 -67.3 -62.7 1.9 -2.3 5.2 47 47 A L H X S+ 0 0 0 -4,-2.8 4,-2.8 2,-0.2 5,-0.2 0.877 112.8 51.9 -51.9 -47.3 -0.2 0.8 4.3 48 48 A E H X S+ 0 0 77 -4,-3.1 4,-2.4 1,-0.2 3,-0.2 0.964 115.2 40.3 -51.0 -65.1 1.7 3.0 6.9 49 49 A Y H X S+ 0 0 121 -4,-1.4 4,-0.8 -5,-0.2 -1,-0.2 0.888 114.7 53.8 -47.9 -50.8 5.2 2.0 5.6 50 50 A K H X S+ 0 0 59 -4,-3.0 4,-3.0 1,-0.2 3,-0.5 0.882 110.1 45.1 -65.6 -39.9 4.0 2.2 1.9 51 51 A V H X S+ 0 0 11 -4,-2.8 4,-2.0 1,-0.2 -1,-0.2 0.960 114.5 50.0 -58.2 -51.9 2.7 5.8 2.3 52 52 A K H < S+ 0 0 123 -4,-2.4 -2,-0.2 -5,-0.2 -1,-0.2 0.495 117.4 42.0 -70.0 -9.7 5.9 6.7 4.2 53 53 A E H >X>S+ 0 0 50 -4,-0.8 3,-2.4 -3,-0.5 4,-1.4 0.792 111.9 50.0 -95.1 -60.4 7.9 5.1 1.3 54 54 A R H 3<5S+ 0 0 118 -4,-3.0 -2,-0.2 1,-0.3 -3,-0.2 0.725 88.0 86.0 -59.7 -21.1 5.9 6.4 -1.7 55 55 A L T 3<5S- 0 0 125 -4,-2.0 -1,-0.3 -5,-0.2 -3,-0.1 0.712 123.1 -88.0 -52.2 -19.9 6.2 9.9 -0.2 56 56 A G T X45S+ 0 0 45 -3,-2.4 3,-0.7 0, 0.0 -2,-0.2 0.602 95.6 121.6 120.9 22.8 9.6 9.8 -2.1 57 57 A T T 3<5 + 0 0 72 -4,-1.4 -3,-0.1 1,-0.2 -4,-0.1 0.694 65.3 82.8 -69.8 -20.0 12.3 8.3 0.1 58 58 A L T 3