==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSFERASE 18-MAY-05 2COS . COMPND 2 MOLECULE: SERINE/THREONINE PROTEIN KINASE LATS2; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR H.ONUKI,H.HIROTA,F.HAYASHI,S.YOKOYAMA,RIKEN STRUCTURAL . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4596.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 63.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 103 0, 0.0 4,-0.3 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0-147.8 -7.5 17.2 6.5 2 2 A S + 0 0 105 2,-0.2 0, 0.0 1,-0.2 0, 0.0 -0.836 360.0 33.0-128.2 165.9 -7.5 20.5 8.4 3 3 A S S S- 0 0 132 -2,-0.3 -1,-0.2 2,-0.1 0, 0.0 0.899 139.5 -23.3 56.4 43.0 -6.1 21.8 11.7 4 4 A G S S- 0 0 69 -3,-0.2 2,-0.7 1,-0.1 -2,-0.2 0.892 75.8-130.3 87.2 87.5 -3.0 19.6 11.3 5 5 A S - 0 0 87 -4,-0.3 2,-0.7 1,-0.1 -1,-0.1 -0.571 28.3-177.8 -72.3 109.3 -3.6 16.6 9.1 6 6 A S + 0 0 128 -2,-0.7 2,-0.2 2,-0.0 -1,-0.1 -0.844 45.3 51.4-113.8 95.3 -2.3 13.6 11.0 7 7 A G S S- 0 0 47 -2,-0.7 3,-0.1 24,-0.1 -2,-0.0 -0.669 84.3 -73.2 152.9 152.0 -2.6 10.4 9.0 8 8 A V - 0 0 34 -2,-0.2 2,-1.0 1,-0.1 3,-0.1 0.189 64.6 -80.6 -53.1-177.4 -1.8 8.7 5.7 9 9 A N > - 0 0 63 1,-0.2 4,-1.8 21,-0.1 3,-0.4 -0.772 32.8-161.2 -96.2 95.5 -3.8 9.6 2.5 10 10 A R H > S+ 0 0 199 -2,-1.0 4,-1.1 1,-0.3 -1,-0.2 0.741 94.2 55.2 -45.0 -23.8 -7.0 7.7 2.7 11 11 A Q H > S+ 0 0 144 2,-0.2 4,-1.0 1,-0.2 -1,-0.3 0.953 99.8 53.9 -76.3 -53.7 -7.1 8.4 -1.1 12 12 A M H >> S+ 0 0 33 -3,-0.4 4,-2.5 1,-0.2 3,-0.5 0.847 104.5 61.1 -49.3 -37.2 -3.7 6.9 -2.0 13 13 A L H 3X S+ 0 0 29 -4,-1.8 4,-3.2 1,-0.3 5,-0.5 0.983 96.4 53.5 -54.5 -67.7 -4.9 3.7 -0.3 14 14 A Q H 3X S+ 0 0 115 -4,-1.1 4,-1.0 1,-0.2 -1,-0.3 0.743 113.2 50.8 -40.6 -25.3 -7.9 3.0 -2.5 15 15 A E H X S+ 0 0 0 -4,-2.5 4,-0.8 1,-0.2 3,-0.6 0.887 117.1 52.0 -58.6 -40.5 -2.5 1.0 -4.0 17 17 A V H >X S+ 0 0 31 -4,-3.2 3,-1.1 1,-0.2 4,-0.9 0.897 94.4 70.6 -63.6 -41.6 -5.2 -1.5 -2.9 18 18 A N H 3< S+ 0 0 131 -4,-1.0 -1,-0.2 -5,-0.5 -2,-0.2 0.852 94.2 57.5 -43.1 -41.6 -6.9 -1.5 -6.3 19 19 A A H << S- 0 0 84 -4,-0.9 -1,-0.3 -3,-0.6 -2,-0.2 0.913 134.8 -81.9 -58.1 -45.2 -3.8 -3.4 -7.5 20 20 A G H << S+ 0 0 72 -3,-1.1 2,-0.3 -4,-0.8 -2,-0.2 0.504 78.4 141.3 142.2 42.3 -4.4 -6.1 -5.0 21 21 A C < - 0 0 20 -4,-0.9 -1,-0.1 -5,-0.3 21,-0.0 -0.809 56.0 -96.0-109.3 149.7 -3.0 -5.2 -1.6 22 22 A D > - 0 0 91 -2,-0.3 4,-2.5 1,-0.1 5,-0.2 -0.280 23.0-141.5 -61.0 144.2 -4.5 -5.9 1.8 23 23 A Q H > S+ 0 0 152 2,-0.2 4,-1.2 1,-0.2 -1,-0.1 0.894 103.4 44.5 -74.3 -41.9 -6.6 -3.1 3.3 24 24 A E H > S+ 0 0 140 2,-0.1 4,-0.8 1,-0.1 -1,-0.2 0.753 122.2 40.8 -73.6 -24.7 -5.3 -3.7 6.9 25 25 A M H > S+ 0 0 82 2,-0.2 4,-1.3 3,-0.1 3,-0.3 0.940 104.6 60.2 -86.4 -60.0 -1.8 -4.0 5.6 26 26 A A H X S+ 0 0 0 -4,-2.5 4,-3.0 1,-0.2 5,-0.2 0.849 104.5 54.9 -34.3 -51.8 -1.6 -1.3 2.9 27 27 A G H X S+ 0 0 21 -4,-1.2 4,-2.6 -5,-0.2 5,-0.3 0.956 102.2 54.2 -49.7 -62.4 -2.3 1.2 5.7 28 28 A R H X S+ 0 0 190 -4,-0.8 4,-2.8 -3,-0.3 3,-0.4 0.899 114.9 39.9 -37.0 -65.4 0.5 0.2 8.0 29 29 A A H X S+ 0 0 1 -4,-1.3 4,-3.0 1,-0.2 5,-0.5 0.945 110.2 59.1 -52.1 -55.0 3.2 0.6 5.2 30 30 A L H X>S+ 0 0 1 -4,-3.0 5,-2.7 -5,-0.3 4,-2.4 0.873 112.7 40.7 -42.0 -46.6 1.5 3.7 3.9 31 31 A K H <5S+ 0 0 120 -4,-2.6 -1,-0.2 -3,-0.4 -2,-0.2 0.959 111.8 54.3 -69.1 -53.0 2.0 5.3 7.3 32 32 A Q H <5S+ 0 0 115 -4,-2.8 -2,-0.2 -5,-0.3 -3,-0.2 0.919 118.2 36.1 -46.4 -53.5 5.5 3.9 7.9 33 33 A T H <5S- 0 0 44 -4,-3.0 -1,-0.2 -5,-0.2 -2,-0.2 0.913 115.0-117.8 -68.7 -43.9 6.8 5.3 4.7 34 34 A G T <5 - 0 0 38 -4,-2.4 -3,-0.2 -5,-0.5 -4,-0.1 0.837 56.3 -63.2 104.4 54.5 4.7 8.5 5.0 35 35 A S S - 0 0 66 1,-0.1 4,-1.6 -7,-0.1 -1,-0.3 -0.957 49.4-108.4-168.9 150.8 4.0 6.8 -3.2 38 38 A I H > S+ 0 0 38 -2,-0.3 4,-1.6 1,-0.2 5,-0.1 0.880 122.2 48.1 -50.1 -42.4 1.9 3.8 -4.1 39 39 A E H > S+ 0 0 160 1,-0.2 4,-3.0 2,-0.2 5,-0.3 0.918 101.0 64.5 -66.0 -44.7 5.0 1.9 -5.0 40 40 A A H > S+ 0 0 22 1,-0.2 4,-2.6 2,-0.2 -1,-0.2 0.899 105.9 44.8 -44.2 -50.9 6.8 2.9 -1.9 41 41 A A H X S+ 0 0 1 -4,-1.6 4,-2.5 2,-0.2 5,-0.3 0.983 112.4 48.4 -59.3 -61.8 4.3 0.9 0.2 42 42 A L H X S+ 0 0 72 -4,-1.6 4,-1.4 1,-0.3 -1,-0.2 0.842 115.2 48.5 -48.0 -37.0 4.3 -2.2 -2.0 43 43 A E H X S+ 0 0 144 -4,-3.0 4,-3.0 2,-0.2 -1,-0.3 0.906 107.6 53.3 -71.4 -43.2 8.1 -2.1 -1.9 44 44 A Y H X S+ 0 0 77 -4,-2.6 4,-1.0 -5,-0.3 -2,-0.2 0.909 108.4 50.4 -58.4 -44.3 8.2 -1.7 1.9 45 45 A I H X S+ 0 0 37 -4,-2.5 4,-1.0 1,-0.2 3,-0.3 0.894 114.1 44.5 -61.6 -41.3 6.1 -4.8 2.4 46 46 A S H < S+ 0 0 43 -4,-1.4 -2,-0.2 -5,-0.3 -1,-0.2 0.892 96.2 75.5 -70.6 -41.1 8.3 -6.8 0.0 47 47 A K H < S+ 0 0 166 -4,-3.0 -1,-0.2 1,-0.2 -2,-0.2 0.853 98.3 48.1 -36.7 -48.3 11.5 -5.5 1.6 48 48 A M H < S- 0 0 142 -4,-1.0 2,-0.3 -3,-0.3 -1,-0.2 0.983 132.3 -30.8 -59.5 -61.6 10.8 -7.8 4.5 49 49 A S S < S+ 0 0 95 -4,-1.0 -1,-0.2 1,-0.0 0, 0.0 -0.984 71.7 123.5-157.0 161.0 10.1 -10.9 2.5 50 50 A G - 0 0 40 -2,-0.3 -1,-0.0 -3,-0.1 -4,-0.0 0.313 24.4-168.0 140.0 83.3 8.7 -12.1 -0.8 51 51 A P S S+ 0 0 139 0, 0.0 2,-0.4 0, 0.0 -5,-0.0 0.438 82.0 66.2 -69.8 2.1 10.6 -14.2 -3.3 52 52 A S + 0 0 110 -6,-0.0 2,-0.3 2,-0.0 -3,-0.0 -0.950 61.5 142.4-131.8 113.2 7.9 -13.4 -5.8 53 53 A S 0 0 112 -2,-0.4 -3,-0.0 -7,-0.0 0, 0.0 -0.992 360.0 360.0-151.0 141.0 7.4 -9.9 -7.1 54 54 A G 0 0 126 -2,-0.3 -2,-0.0 0, 0.0 -1,-0.0 -0.333 360.0 360.0 136.3 360.0 6.4 -8.3 -10.5