==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 19-MAY-05 2CP8 . COMPND 2 MOLECULE: NEXT TO BRCA1 GENE 1 PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR W.OHASHI,H.HIROTA,T.YAMAZAKI,Y.MUTO,S.YOKOYAMA,RIKEN . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4355.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 64.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 25 46.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 122 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-172.9 -15.0 5.6 10.3 2 2 A S - 0 0 138 1,-0.0 2,-0.3 2,-0.0 0, 0.0 -0.321 360.0-171.8 -61.7 139.2 -12.1 6.7 8.1 3 3 A S + 0 0 119 2,-0.0 2,-0.1 -2,-0.0 -1,-0.0 -0.845 31.2 62.0-130.3 166.7 -11.7 10.5 8.0 4 4 A G S S- 0 0 72 -2,-0.3 -2,-0.0 3,-0.0 0, 0.0 -0.274 86.5 -34.3 105.3 166.8 -9.6 13.0 6.1 5 5 A S S S- 0 0 119 1,-0.1 -2,-0.0 -2,-0.1 0, 0.0 -0.053 72.6 -92.1 -54.9 160.9 -9.4 14.1 2.5 6 6 A S > - 0 0 125 1,-0.1 3,-0.5 2,-0.1 4,-0.3 0.866 66.9-177.9 -42.2 -45.1 -9.9 11.6 -0.3 7 7 A G T 3 - 0 0 60 1,-0.2 4,-0.1 2,-0.1 -1,-0.1 -0.208 40.6 -78.5 73.1-167.9 -6.1 11.0 -0.2 8 8 A Q T 3> S+ 0 0 136 2,-0.1 4,-0.6 1,-0.1 -1,-0.2 -0.217 96.6 100.6-127.0 41.9 -4.2 8.6 -2.5 9 9 A T H <> S+ 0 0 32 -3,-0.5 4,-2.2 2,-0.2 5,-0.3 0.909 75.9 53.3 -90.2 -54.2 -4.9 5.3 -0.9 10 10 A A H > S+ 0 0 76 -4,-0.3 4,-2.8 1,-0.2 5,-0.2 0.893 101.8 63.9 -48.0 -46.4 -7.7 3.9 -3.0 11 11 A A H > S+ 0 0 52 2,-0.2 4,-1.2 1,-0.2 -1,-0.2 0.930 112.1 32.6 -43.0 -63.0 -5.6 4.4 -6.1 12 12 A L H >X S+ 0 0 22 -4,-0.6 4,-1.2 -3,-0.3 3,-0.7 0.986 113.7 58.3 -60.4 -62.3 -2.9 1.9 -5.0 13 13 A M H 3X S+ 0 0 21 -4,-2.2 4,-1.9 1,-0.3 -1,-0.2 0.816 101.5 61.7 -36.4 -40.1 -5.2 -0.5 -3.1 14 14 A A H 3X S+ 0 0 40 -4,-2.8 4,-1.9 -5,-0.3 3,-0.5 0.968 95.5 56.1 -53.4 -61.4 -7.0 -0.8 -6.5 15 15 A H H S+ 0 0 0 -4,-1.2 5,-2.6 1,-0.2 4,-2.3 0.927 105.2 55.9 -54.0 -49.1 -3.8 -5.0 -5.7 17 17 A F H <5S+ 0 0 96 -4,-1.9 -1,-0.2 -3,-0.5 -2,-0.2 0.867 114.5 40.8 -52.1 -39.4 -7.5 -5.8 -6.2 18 18 A E H <5S+ 0 0 144 -4,-1.9 -2,-0.2 -3,-0.4 -1,-0.2 0.956 112.3 53.3 -74.7 -53.7 -6.8 -6.3 -9.9 19 19 A M H <5S- 0 0 102 -4,-3.2 -2,-0.2 -5,-0.2 -3,-0.2 0.945 131.0 -78.5 -45.4 -64.3 -3.5 -8.2 -9.6 20 20 A G T <5S+ 0 0 60 -4,-2.3 2,-0.5 1,-0.1 -3,-0.2 0.333 92.7 113.0 163.7 32.4 -4.9 -10.8 -7.2 21 21 A F < + 0 0 32 -5,-2.6 -1,-0.1 -6,-0.2 -2,-0.1 -0.960 28.3 174.9-128.1 115.1 -5.2 -9.4 -3.7 22 22 A C + 0 0 94 -2,-0.5 2,-0.5 1,-0.1 3,-0.1 -0.259 48.9 109.2-110.0 43.7 -8.5 -8.9 -2.0 23 23 A D > + 0 0 70 1,-0.1 4,-2.1 -10,-0.1 5,-0.2 -0.768 32.3 169.7-122.9 85.5 -7.2 -7.8 1.4 24 24 A R H > S+ 0 0 145 -2,-0.5 4,-1.7 1,-0.2 5,-0.1 0.815 81.8 57.5 -62.8 -30.7 -7.7 -4.1 2.0 25 25 A Q H > S+ 0 0 121 2,-0.2 4,-1.3 -3,-0.1 -1,-0.2 0.901 109.4 43.7 -67.2 -41.9 -6.7 -4.6 5.6 26 26 A L H > S+ 0 0 52 2,-0.2 4,-1.5 -3,-0.2 3,-0.2 0.990 112.1 49.9 -66.8 -62.4 -3.3 -6.0 4.6 27 27 A N H >X S+ 0 0 0 -4,-2.1 4,-2.8 1,-0.2 3,-1.4 0.916 105.3 58.5 -40.6 -62.0 -2.4 -3.6 1.9 28 28 A L H 3X S+ 0 0 58 -4,-1.7 4,-2.5 1,-0.3 -1,-0.2 0.879 102.2 53.1 -34.3 -63.5 -3.2 -0.6 4.1 29 29 A R H 3< S+ 0 0 203 -4,-1.3 -1,-0.3 1,-0.2 -2,-0.2 0.859 115.3 42.6 -43.0 -43.0 -0.6 -1.7 6.7 30 30 A L H XX S+ 0 0 17 -4,-1.5 4,-3.1 -3,-1.4 3,-2.8 0.946 107.9 58.0 -71.1 -50.2 1.9 -1.8 3.9 31 31 A L H 3<>S+ 0 0 0 -4,-2.8 5,-2.6 1,-0.3 4,-0.3 0.906 110.4 44.1 -45.4 -50.8 0.8 1.4 2.2 32 32 A K T 3<5S+ 0 0 131 -4,-2.5 -1,-0.3 -5,-0.2 -2,-0.2 0.029 119.6 46.3 -85.6 28.3 1.5 3.3 5.5 33 33 A K T <45S+ 0 0 137 -3,-2.8 -2,-0.2 -5,-0.1 -1,-0.2 0.541 117.9 32.8-134.3 -38.6 4.8 1.4 5.8 34 34 A H T ><5S- 0 0 35 -4,-3.1 3,-0.6 -5,-0.0 6,-0.2 -0.022 114.3-100.0-113.3 27.7 6.5 1.5 2.4 35 35 A N T 3 5S- 0 0 135 -4,-0.3 -3,-0.2 1,-0.3 3,-0.2 0.894 78.7 -57.8 55.9 42.5 5.2 4.9 1.4 36 36 A Y T 3 - 0 0 78 -3,-0.6 4,-3.1 -7,-0.3 5,-0.4 -0.581 21.0-164.0 -81.0 83.5 5.2 1.5 -2.7 38 38 A I H > S+ 0 0 36 -2,-1.7 4,-2.4 1,-0.2 5,-0.3 0.806 89.7 54.8 -34.1 -40.7 3.0 -0.8 -4.8 39 39 A L H > S+ 0 0 115 2,-0.2 4,-3.2 1,-0.2 5,-0.3 0.984 112.8 37.4 -60.6 -61.5 6.3 -2.7 -5.4 40 40 A Q H > S+ 0 0 96 -3,-0.3 4,-2.0 1,-0.2 5,-0.2 0.889 116.1 55.4 -58.5 -41.0 7.2 -3.2 -1.8 41 41 A V H X S+ 0 0 0 -4,-3.1 4,-1.4 2,-0.2 -1,-0.2 0.900 117.9 34.2 -59.3 -42.6 3.6 -3.7 -0.9 42 42 A V H X S+ 0 0 18 -4,-2.4 4,-2.6 -5,-0.4 5,-0.3 0.972 112.9 55.9 -76.8 -60.3 3.3 -6.5 -3.5 43 43 A T H X S+ 0 0 70 -4,-3.2 4,-1.1 -5,-0.3 -3,-0.2 0.837 111.5 48.6 -40.1 -41.3 6.7 -8.1 -3.3 44 44 A E H >X S+ 0 0 76 -4,-2.0 4,-2.0 -5,-0.3 3,-0.8 0.959 108.3 51.1 -66.6 -52.8 6.1 -8.5 0.4 45 45 A L H 3X S+ 0 0 9 -4,-1.4 4,-2.0 1,-0.3 -2,-0.2 0.909 105.8 56.6 -51.1 -47.2 2.6 -10.1 -0.0 46 46 A L H 3< S+ 0 0 106 -4,-2.6 -1,-0.3 1,-0.2 6,-0.2 0.852 106.8 51.3 -54.3 -36.5 4.0 -12.6 -2.5 47 47 A Q H << S+ 0 0 105 -4,-1.1 -1,-0.2 -3,-0.8 -2,-0.2 0.959 106.2 52.4 -66.6 -52.8 6.5 -13.7 0.2 48 48 A L H < S+ 0 0 107 -4,-2.0 2,-0.3 3,-0.0 -2,-0.2 0.947 107.1 56.5 -47.4 -61.3 3.9 -14.2 2.9 49 49 A S S < S+ 0 0 92 -4,-2.0 3,-0.2 2,-0.1 0, 0.0 -0.577 96.6 39.4 -78.3 133.8 1.8 -16.5 0.7 50 50 A G S S- 0 0 50 -2,-0.3 -3,-0.0 1,-0.1 0, 0.0 -0.473 101.7 -66.5 118.1 169.5 3.5 -19.6 -0.7 51 51 A P S S+ 0 0 141 0, 0.0 2,-1.5 0, 0.0 3,-0.4 0.602 102.0 101.4 -69.7 -11.2 6.1 -22.2 0.3 52 52 A S + 0 0 83 -6,-0.2 0, 0.0 1,-0.2 0, 0.0 -0.611 38.6 119.6 -79.8 90.9 8.7 -19.4 0.5 53 53 A S 0 0 118 -2,-1.5 -1,-0.2 0, 0.0 -6,-0.0 0.691 360.0 360.0-118.6 -45.4 8.9 -18.8 4.3 54 54 A G 0 0 124 -3,-0.4 -2,-0.0 0, 0.0 0, 0.0 0.585 360.0 360.0 -99.3 360.0 12.4 -19.5 5.3