==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 16-APR-98 2CPB . COMPND 2 MOLECULE: M13 MAJOR COAT PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE M13; . AUTHOR C.H.M.PAPAVOINE,B.E.C.CHRISTIAANS,R.H.A.FOLMER, . 50 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4960.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 88.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 24.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 60.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 152 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 91.9 -21.3 -15.2 -22.5 2 2 A E - 0 0 130 1,-0.3 3,-0.2 0, 0.0 0, 0.0 -0.771 360.0 -56.2-133.1 177.4 -24.9 -15.7 -21.8 3 3 A G S S- 0 0 61 -2,-0.2 2,-2.6 1,-0.2 -1,-0.3 0.180 79.7 -68.0 -45.7 173.1 -28.2 -13.7 -21.4 4 4 A D S S+ 0 0 161 1,-0.2 3,-0.2 2,-0.1 -1,-0.2 -0.415 83.5 136.2 -69.5 75.3 -28.4 -10.9 -18.9 5 5 A D >> + 0 0 79 -2,-2.6 3,-0.9 -3,-0.2 4,-0.8 -0.253 12.0 128.0-119.8 47.8 -28.1 -13.1 -15.8 6 6 A P H 3> + 0 0 83 0, 0.0 4,-1.6 0, 0.0 5,-0.2 0.704 66.7 72.5 -71.5 -18.7 -25.7 -11.2 -13.6 7 7 A A H 34 S+ 0 0 84 1,-0.2 4,-0.4 -3,-0.2 -2,-0.1 0.820 100.0 43.4 -64.6 -32.5 -28.3 -11.5 -10.9 8 8 A K H <> S+ 0 0 85 -3,-0.9 4,-2.7 2,-0.1 -1,-0.2 0.712 105.5 65.9 -85.3 -23.0 -27.4 -15.2 -10.6 9 9 A A H X S+ 0 0 43 -4,-0.8 4,-2.7 2,-0.2 5,-0.2 0.993 99.0 47.3 -61.0 -65.8 -23.6 -14.5 -10.8 10 10 A A H X S+ 0 0 78 -4,-1.6 4,-0.5 1,-0.3 -1,-0.2 0.791 115.9 50.1 -46.8 -30.8 -23.3 -12.6 -7.5 11 11 A F H >4 S+ 0 0 158 -4,-0.4 3,-1.0 -5,-0.2 -1,-0.3 0.929 110.7 45.2 -75.9 -47.3 -25.3 -15.4 -6.0 12 12 A N H >X S+ 0 0 100 -4,-2.7 3,-2.0 1,-0.2 4,-0.7 0.773 99.7 73.7 -66.6 -25.7 -23.2 -18.3 -7.4 13 13 A S H >X S+ 0 0 55 -4,-2.7 3,-1.2 1,-0.3 4,-1.1 0.847 81.5 69.5 -56.0 -36.0 -20.1 -16.3 -6.4 14 14 A L H << S+ 0 0 121 -3,-1.0 -1,-0.3 -4,-0.5 4,-0.2 0.757 94.7 57.0 -55.0 -24.2 -20.9 -17.3 -2.8 15 15 A Q H X4 S+ 0 0 146 -3,-2.0 3,-1.2 -4,-0.2 -1,-0.3 0.822 99.4 57.0 -76.6 -32.3 -19.9 -20.8 -3.8 16 16 A A H X< S+ 0 0 58 -3,-1.2 3,-2.7 -4,-0.7 4,-0.3 0.753 84.0 83.7 -69.3 -24.2 -16.5 -19.6 -5.0 17 17 A S T >X + 0 0 42 -4,-1.1 3,-2.2 1,-0.3 4,-0.5 0.762 66.7 86.5 -50.1 -25.6 -15.9 -18.3 -1.4 18 18 A A H X> S+ 0 0 54 -3,-1.2 4,-1.6 1,-0.3 3,-1.5 0.797 76.1 68.6 -46.1 -31.2 -14.9 -21.9 -0.7 19 19 A T H <> S+ 0 0 93 -3,-2.7 4,-2.8 1,-0.3 -1,-0.3 0.889 84.8 67.5 -56.8 -41.5 -11.5 -20.8 -1.9 20 20 A E H <> S+ 0 0 78 -3,-2.2 4,-0.7 -4,-0.3 -1,-0.3 0.777 106.8 41.8 -49.6 -29.6 -11.1 -18.6 1.2 21 21 A Y H << S+ 0 0 169 -3,-1.5 4,-0.3 -4,-0.5 -1,-0.2 0.849 112.0 51.1 -87.6 -40.1 -11.0 -21.8 3.2 22 22 A I H < S+ 0 0 122 -4,-1.6 3,-0.4 1,-0.2 4,-0.4 0.773 106.0 59.3 -68.4 -25.4 -8.7 -23.8 0.9 23 23 A G H >< S+ 0 0 48 -4,-2.8 3,-0.7 1,-0.2 4,-0.4 0.899 104.2 47.7 -69.5 -41.8 -6.3 -20.9 1.0 24 24 A Y T 3X S+ 0 0 154 -4,-0.7 4,-2.3 -5,-0.3 -1,-0.2 0.495 86.8 94.1 -77.4 -3.4 -5.9 -21.1 4.7 25 25 A A H 3> S+ 0 0 45 -3,-0.4 4,-1.6 -4,-0.3 -1,-0.2 0.919 85.6 48.1 -53.9 -46.1 -5.3 -24.8 4.4 26 26 A W H <> S+ 0 0 195 -3,-0.7 4,-2.2 -4,-0.4 -1,-0.2 0.906 109.9 51.8 -61.4 -42.9 -1.6 -24.2 4.2 27 27 A A H > S+ 0 0 57 -4,-0.4 4,-3.2 1,-0.2 -1,-0.2 0.841 105.9 55.4 -63.3 -32.4 -1.8 -22.0 7.3 28 28 A M H X S+ 0 0 105 -4,-2.3 4,-2.5 2,-0.2 -1,-0.2 0.865 107.3 50.0 -67.3 -34.6 -3.7 -24.8 9.1 29 29 A V H X S+ 0 0 71 -4,-1.6 4,-2.0 2,-0.2 -2,-0.2 0.898 113.1 45.3 -68.6 -41.2 -0.8 -27.0 8.3 30 30 A V H X S+ 0 0 94 -4,-2.2 4,-3.2 2,-0.2 -2,-0.2 0.904 110.8 54.1 -68.3 -41.3 1.6 -24.4 9.7 31 31 A V H X S+ 0 0 84 -4,-3.2 4,-3.5 2,-0.2 5,-0.2 0.950 107.0 51.2 -55.9 -51.7 -0.6 -24.0 12.7 32 32 A I H X S+ 0 0 86 -4,-2.5 4,-2.7 1,-0.2 -1,-0.2 0.924 112.5 45.8 -51.3 -50.9 -0.5 -27.7 13.3 33 33 A V H X S+ 0 0 83 -4,-2.0 4,-2.3 1,-0.2 -1,-0.2 0.925 113.3 49.8 -60.0 -46.6 3.3 -27.6 13.2 34 34 A G H X S+ 0 0 43 -4,-3.2 4,-3.4 2,-0.2 -2,-0.2 0.931 112.1 47.8 -58.4 -48.2 3.4 -24.5 15.4 35 35 A A H X S+ 0 0 52 -4,-3.5 4,-3.3 2,-0.2 5,-0.3 0.968 109.7 51.6 -57.3 -57.3 1.1 -26.1 18.0 36 36 A T H X S+ 0 0 93 -4,-2.7 4,-0.6 1,-0.2 -1,-0.2 0.898 116.4 41.8 -46.0 -49.3 3.0 -29.4 18.1 37 37 A I H >X S+ 0 0 92 -4,-2.3 4,-1.7 -5,-0.2 3,-1.5 0.944 113.6 51.7 -65.5 -50.6 6.3 -27.5 18.7 38 38 A G H 3X S+ 0 0 18 -4,-3.4 4,-4.1 1,-0.3 5,-0.5 0.921 98.3 64.7 -53.1 -49.5 4.7 -25.0 21.1 39 39 A I H 3X S+ 0 0 115 -4,-3.3 4,-0.5 -5,-0.2 -1,-0.3 0.786 110.1 42.7 -46.1 -28.3 3.3 -27.8 23.3 40 40 A K H XX S+ 0 0 127 -3,-1.5 4,-3.8 -4,-0.6 3,-1.2 0.964 119.8 35.6 -81.7 -71.7 6.9 -28.7 23.9 41 41 A L H 3X S+ 0 0 79 -4,-1.7 4,-2.2 1,-0.3 -2,-0.2 0.866 116.1 58.7 -49.8 -40.3 8.6 -25.3 24.5 42 42 A F H 3< S+ 0 0 163 -4,-4.1 -1,-0.3 -5,-0.3 -3,-0.2 0.857 115.9 34.2 -58.7 -36.9 5.5 -24.2 26.2 43 43 A K H << S+ 0 0 145 -3,-1.2 3,-0.5 -4,-0.5 4,-0.3 0.889 119.7 48.4 -85.1 -45.7 5.9 -27.0 28.7 44 44 A K H X S+ 0 0 94 -4,-3.8 4,-0.9 1,-0.3 2,-0.6 0.688 99.1 73.2 -68.2 -17.7 9.7 -27.1 28.8 45 45 A F T < S+ 0 0 166 -4,-2.2 -1,-0.3 -5,-0.4 -4,-0.1 -0.231 82.0 75.5 -91.6 45.6 9.5 -23.3 29.3 46 46 A T T 4 S- 0 0 117 -2,-0.6 -1,-0.2 -3,-0.5 -2,-0.1 0.716 119.8 -11.0-116.6 -59.1 8.3 -23.7 32.9 47 47 A S T >4 S- 0 0 97 -4,-0.3 3,-0.8 -3,-0.2 -2,-0.1 0.370 85.8-159.9-125.7 -2.3 11.2 -24.7 35.1 48 48 A K T 3< - 0 0 126 -4,-0.9 -3,-0.1 1,-0.2 -1,-0.0 0.170 48.3 -62.7 45.0-172.7 13.8 -25.6 32.4 49 49 A A T 3 0 0 87 1,-0.1 -1,-0.2 -5,-0.0 -5,-0.0 0.160 360.0 360.0 -90.1 17.9 16.8 -27.8 33.2 50 50 A S < 0 0 172 -3,-0.8 -2,-0.1 0, 0.0 -1,-0.1 0.433 360.0 360.0 57.0 360.0 18.1 -25.2 35.7