==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 20-MAY-05 2CQX . COMPND 2 MOLECULE: LAG1 LONGEVITY ASSURANCE HOMOLOG 5; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR A.Z.M.RUHUL MOMEN,H.ONUKI,H.HIROTA,T.TOMIZAWA,S.KOSHIBA, . 72 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6448.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 55.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 36.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 130 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-152.4 -42.7 11.4 5.7 2 2 A S - 0 0 124 2,-0.0 2,-0.3 0, 0.0 0, 0.0 -0.974 360.0-169.3-174.2 177.7 -39.3 10.1 4.9 3 3 A S - 0 0 117 -2,-0.3 2,-0.2 2,-0.0 0, 0.0 -0.975 3.3-159.5-170.3 174.0 -36.0 10.8 3.1 4 4 A G - 0 0 69 -2,-0.3 2,-0.3 2,-0.0 -2,-0.0 -0.683 15.5-115.3-146.4-160.4 -32.6 9.3 2.0 5 5 A S - 0 0 127 -2,-0.2 2,-0.3 2,-0.0 -2,-0.0 -0.993 19.2-175.5-151.1 152.4 -29.1 10.1 1.0 6 6 A S + 0 0 130 -2,-0.3 2,-0.1 0, 0.0 -2,-0.0 -0.967 5.1 169.4-146.5 160.6 -26.8 9.7 -2.1 7 7 A G + 0 0 75 -2,-0.3 2,-0.3 1,-0.0 3,-0.1 -0.416 13.1 153.0-142.3-141.9 -23.2 10.3 -3.1 8 8 A G + 0 0 62 1,-0.1 2,-0.3 -2,-0.1 -1,-0.0 -0.718 58.3 66.5 145.0 -91.6 -20.8 9.6 -6.0 9 9 A I + 0 0 170 -2,-0.3 2,-0.3 1,-0.0 -1,-0.1 -0.492 62.1 175.1 -70.2 130.2 -17.9 11.9 -6.5 10 10 A K - 0 0 168 -2,-0.3 -3,-0.0 1,-0.1 -1,-0.0 -0.828 32.6 -86.4-131.1 169.9 -15.4 11.9 -3.7 11 11 A D - 0 0 161 -2,-0.3 -1,-0.1 1,-0.0 0, 0.0 -0.215 38.6-146.1 -71.8 166.0 -12.0 13.4 -2.9 12 12 A S - 0 0 99 0, 0.0 2,-0.3 0, 0.0 -1,-0.0 -0.984 21.3-100.9-138.4 147.8 -8.7 11.8 -4.0 13 13 A P - 0 0 84 0, 0.0 58,-0.0 0, 0.0 3,-0.0 -0.510 33.1-179.9 -69.8 122.7 -5.2 11.6 -2.5 14 14 A V + 0 0 138 -2,-0.3 2,-0.1 2,-0.0 0, 0.0 0.945 62.4 60.7 -86.2 -62.9 -2.7 14.0 -4.1 15 15 A N S S- 0 0 100 1,-0.1 2,-0.4 2,-0.0 57,-0.1 -0.415 84.9-124.5 -69.3 141.2 0.6 13.4 -2.3 16 16 A K - 0 0 130 1,-0.1 -1,-0.1 -2,-0.1 -2,-0.0 -0.717 6.9-135.6 -90.6 135.7 2.0 9.9 -2.6 17 17 A V S S- 0 0 31 -2,-0.4 -1,-0.1 1,-0.2 -2,-0.0 0.928 79.7 -26.8 -51.8 -51.0 2.8 7.9 0.5 18 18 A E - 0 0 91 -3,-0.0 3,-0.5 38,-0.0 -1,-0.2 -0.987 59.0-102.9-162.7 161.5 6.2 6.8 -0.9 19 19 A P S > S+ 0 0 97 0, 0.0 3,-0.5 0, 0.0 -2,-0.0 0.425 99.3 93.8 -69.8 3.2 8.1 6.1 -4.2 20 20 A N T > + 0 0 2 1,-0.2 3,-3.1 2,-0.1 4,-0.4 0.098 41.1 132.8 -84.0 24.0 7.5 2.4 -3.4 21 21 A D T >> + 0 0 66 -3,-0.5 4,-1.0 1,-0.3 3,-0.9 0.823 50.1 86.2 -42.7 -36.5 4.4 2.6 -5.6 22 22 A T H <> S+ 0 0 56 -3,-0.5 4,-1.2 1,-0.3 -1,-0.3 0.747 87.9 54.5 -38.1 -26.9 5.7 -0.6 -7.2 23 23 A L H <> S+ 0 0 0 -3,-3.1 4,-3.1 2,-0.2 5,-0.3 0.937 88.7 70.9 -75.8 -49.5 3.9 -2.2 -4.3 24 24 A E H <> S+ 0 0 42 -3,-0.9 4,-0.8 -4,-0.4 -1,-0.2 0.787 104.7 47.2 -36.5 -34.3 0.5 -0.7 -5.0 25 25 A K H >X S+ 0 0 136 -4,-1.0 3,-1.7 2,-0.2 4,-1.3 0.990 110.1 45.4 -73.7 -68.0 0.5 -3.0 -8.0 26 26 A V H 3X>S+ 0 0 20 -4,-1.2 4,-2.9 1,-0.3 5,-2.4 0.832 105.0 67.4 -44.6 -37.3 1.6 -6.3 -6.5 27 27 A F H 3<5S+ 0 0 24 -4,-3.1 -1,-0.3 1,-0.3 -2,-0.2 0.906 119.2 19.7 -51.5 -46.3 -0.9 -5.6 -3.7 28 28 A V H <<5S+ 0 0 114 -3,-1.7 -1,-0.3 -4,-0.8 -2,-0.2 0.290 127.7 56.7-106.7 6.7 -3.8 -5.9 -6.1 29 29 A S H <5S+ 0 0 98 -4,-1.3 -3,-0.2 -3,-0.3 -2,-0.2 0.822 129.9 0.3-102.2 -48.6 -1.8 -7.9 -8.7 30 30 A V T <5S- 0 0 71 -4,-2.9 2,-0.3 1,-0.3 -3,-0.2 0.766 130.7 -29.1-109.0 -45.3 -0.5 -10.9 -6.7 31 31 A T < - 0 0 55 -5,-2.4 -1,-0.3 1,-0.1 -2,-0.2 -0.887 38.0-133.0-175.2 143.1 -1.9 -10.3 -3.2 32 32 A K S S+ 0 0 110 1,-0.3 29,-0.1 -2,-0.3 -5,-0.1 0.764 108.9 38.7 -72.1 -25.6 -3.0 -7.6 -0.8 33 33 A Y S S- 0 0 111 -6,-0.1 -1,-0.3 -3,-0.1 -6,-0.0 -0.712 82.0-178.6-129.3 81.5 -1.0 -9.2 2.0 34 34 A P - 0 0 19 0, 0.0 2,-0.3 0, 0.0 -2,-0.0 -0.041 18.2-124.9 -69.8 177.1 2.3 -10.7 0.7 35 35 A D >> - 0 0 107 1,-0.1 3,-2.7 0, 0.0 4,-1.5 -0.819 33.4 -89.1-124.7 164.9 4.9 -12.6 2.7 36 36 A E H 3> S+ 0 0 129 1,-0.3 4,-2.8 -2,-0.3 5,-0.2 0.862 120.3 70.5 -35.4 -53.1 8.6 -12.2 3.4 37 37 A K H 34 S+ 0 0 157 1,-0.3 4,-0.5 2,-0.2 -1,-0.3 0.831 107.3 37.5 -34.3 -46.2 9.2 -14.4 0.3 38 38 A R H X> S+ 0 0 113 -3,-2.7 3,-1.5 1,-0.2 4,-1.2 0.926 110.1 59.0 -75.3 -47.4 8.1 -11.4 -1.7 39 39 A L H 3X S+ 0 0 2 -4,-1.5 4,-2.9 1,-0.3 -2,-0.2 0.817 91.9 73.6 -51.3 -32.1 9.6 -8.7 0.5 40 40 A K H 3X S+ 0 0 146 -4,-2.8 4,-0.6 -5,-0.2 -1,-0.3 0.900 102.6 39.0 -49.3 -46.4 13.0 -10.4 -0.2 41 41 A G H X> S+ 0 0 42 -3,-1.5 3,-2.6 -4,-0.5 4,-2.0 0.996 114.2 48.7 -69.0 -66.1 12.9 -9.0 -3.8 42 42 A L H 3X S+ 0 0 13 -4,-1.2 4,-2.9 1,-0.3 6,-0.8 0.852 97.1 75.1 -41.7 -42.5 11.5 -5.5 -3.2 43 43 A S H 3<>S+ 0 0 42 -4,-2.9 5,-0.6 1,-0.2 -1,-0.3 0.848 111.7 25.7 -39.2 -44.0 14.1 -5.2 -0.4 44 44 A K H X<5S+ 0 0 166 -3,-2.6 3,-2.0 -4,-0.6 -1,-0.2 0.886 117.2 60.8 -88.7 -46.9 16.6 -4.8 -3.2 45 45 A Q H 3<5S+ 0 0 136 -4,-2.0 -2,-0.2 1,-0.3 -3,-0.2 0.924 123.7 22.7 -45.2 -56.3 14.4 -3.4 -5.9 46 46 A L T 3<5S- 0 0 32 -4,-2.9 -1,-0.3 -5,-0.1 -2,-0.2 0.086 107.7-120.9-100.2 21.8 13.5 -0.4 -3.8 47 47 A D T < 5S+ 0 0 142 -3,-2.0 -3,-0.2 -5,-0.3 -4,-0.2 0.829 72.2 133.1 41.4 38.4 16.6 -0.7 -1.7 48 48 A W < - 0 0 38 -6,-0.8 2,-0.4 -5,-0.6 -1,-0.1 -0.466 58.8-102.9-108.0-178.6 14.2 -1.0 1.2 49 49 A S > - 0 0 71 -2,-0.2 4,-3.2 1,-0.1 5,-0.3 -0.886 25.1-119.4-111.7 139.8 14.0 -3.4 4.2 50 50 A V H > S+ 0 0 62 -2,-0.4 4,-1.9 1,-0.2 -1,-0.1 0.843 118.9 41.6 -39.0 -43.4 11.5 -6.3 4.5 51 51 A R H > S+ 0 0 201 2,-0.2 4,-1.7 1,-0.2 -1,-0.2 0.973 111.8 51.8 -71.3 -57.1 10.2 -4.5 7.6 52 52 A K H > S+ 0 0 113 1,-0.2 4,-1.1 2,-0.2 -2,-0.2 0.892 112.6 48.5 -46.2 -47.1 10.2 -1.0 6.2 53 53 A I H >X S+ 0 0 0 -4,-3.2 3,-1.5 1,-0.2 4,-1.5 0.970 101.5 61.6 -59.3 -57.4 8.3 -2.2 3.2 54 54 A Q H 3X S+ 0 0 108 -4,-1.9 4,-2.2 -5,-0.3 3,-0.4 0.863 99.9 56.4 -34.8 -55.1 5.7 -4.1 5.2 55 55 A C H 3X S+ 0 0 90 -4,-1.7 4,-2.3 1,-0.3 -1,-0.3 0.890 103.2 55.1 -47.0 -46.2 4.6 -0.8 6.8 56 56 A W H