==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 20-MAY-05 2CRB . COMPND 2 MOLECULE: NUCLEAR RECEPTOR BINDING FACTOR 2; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR T.SUETAKE,F.HAYASHI,S.YOKOYAMA,RIKEN STRUCTURAL . 97 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7767.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 84 86.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 5.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 12.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 65 67.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 89 0, 0.0 2,-0.7 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0-125.4 -8.9 25.0 9.6 2 2 A S - 0 0 121 4,-0.2 4,-0.1 1,-0.2 3,-0.0 -0.884 360.0 -29.0-106.1 109.8 -8.3 23.6 13.0 3 3 A S S S+ 0 0 140 -2,-0.7 2,-0.2 1,-0.1 -1,-0.2 0.892 131.6 58.4 53.4 42.7 -6.1 25.9 15.2 4 4 A G S S- 0 0 35 -3,-0.1 -1,-0.1 3,-0.0 0, 0.0 -0.761 73.1-133.3 168.6 144.3 -4.4 27.2 12.1 5 5 A S S S+ 0 0 132 -2,-0.2 2,-0.3 -4,-0.1 -2,-0.0 -0.207 85.8 60.6-102.9 40.9 -5.1 29.0 8.8 6 6 A S + 0 0 79 -4,-0.1 -4,-0.2 50,-0.0 2,-0.1 -0.921 48.3 127.3-153.2 175.8 -2.9 26.6 6.8 7 7 A G - 0 0 57 -2,-0.3 2,-1.3 -6,-0.1 50,-0.1 -0.422 59.2 -99.7 138.5 146.2 -2.5 23.0 5.7 8 8 A M > + 0 0 28 -2,-0.1 2,-1.9 49,-0.1 4,-0.8 -0.359 50.4 167.0 -88.4 55.6 -2.1 20.8 2.6 9 9 A E T 4 + 0 0 176 -2,-1.3 -1,-0.1 1,-0.2 -2,-0.0 -0.514 59.7 45.9 -73.8 84.4 -5.8 19.8 2.6 10 10 A G T > S+ 0 0 31 -2,-1.9 4,-1.6 0, 0.0 -1,-0.2 -0.146 103.9 42.2-175.9 -77.0 -5.8 18.2 -0.9 11 11 A P H > S+ 0 0 21 0, 0.0 4,-1.0 0, 0.0 -2,-0.1 0.593 112.3 61.3 -69.8 -10.3 -3.1 15.8 -2.0 12 12 A L H X S+ 0 0 28 -4,-0.8 4,-1.7 2,-0.2 5,-0.1 0.938 103.2 43.9 -81.1 -52.8 -3.3 14.2 1.4 13 13 A N H > S+ 0 0 105 1,-0.2 4,-2.0 2,-0.2 -1,-0.1 0.915 110.9 56.6 -58.7 -45.1 -6.9 13.0 1.4 14 14 A L H X S+ 0 0 82 -4,-1.6 4,-0.9 1,-0.2 3,-0.3 0.930 107.8 46.9 -52.5 -50.9 -6.6 11.7 -2.1 15 15 A A H X S+ 0 0 0 -4,-1.0 4,-1.9 1,-0.2 3,-0.4 0.837 108.2 57.9 -61.2 -33.6 -3.6 9.5 -1.2 16 16 A H H X S+ 0 0 74 -4,-1.7 4,-1.7 1,-0.2 -1,-0.2 0.890 94.6 64.2 -64.4 -40.6 -5.6 8.3 1.8 17 17 A Q H X S+ 0 0 129 -4,-2.0 4,-0.8 -3,-0.3 -1,-0.2 0.856 107.4 43.5 -51.2 -38.2 -8.5 7.1 -0.4 18 18 A Q H >X S+ 0 0 66 -4,-0.9 4,-1.7 -3,-0.4 3,-0.6 0.942 101.4 66.4 -73.8 -50.3 -6.0 4.5 -1.8 19 19 A S H 3X S+ 0 0 40 -4,-1.9 4,-2.1 1,-0.3 -2,-0.2 0.873 97.6 56.2 -36.0 -56.1 -4.4 3.5 1.5 20 20 A R H 3X S+ 0 0 159 -4,-1.7 4,-2.9 1,-0.2 3,-0.4 0.921 104.5 52.1 -43.9 -57.3 -7.8 1.9 2.5 21 21 A R H S+ 0 0 19 -4,-2.3 5,-2.7 -5,-0.3 3,-0.4 0.884 103.3 58.3 -78.2 -41.2 -6.6 -6.2 0.1 26 26 A L H ><5S+ 0 0 60 -4,-2.2 3,-1.7 1,-0.3 5,-0.2 0.896 103.9 52.9 -55.1 -43.0 -3.9 -7.2 2.6 27 27 A A H 3<5S+ 0 0 92 -4,-1.9 -1,-0.3 1,-0.3 -2,-0.2 0.838 108.3 50.4 -62.4 -33.7 -6.6 -8.8 4.7 28 28 A A T 3<5S- 0 0 71 -4,-0.7 -1,-0.3 -3,-0.4 -2,-0.2 0.301 119.9-111.7 -87.2 9.3 -7.8 -10.8 1.7 29 29 A G T < 5S+ 0 0 37 -3,-1.7 2,-1.1 1,-0.1 3,-0.3 0.590 77.8 136.5 71.5 9.0 -4.2 -11.9 1.1 30 30 A K >< + 0 0 107 -5,-2.7 4,-1.9 1,-0.2 3,-0.3 -0.159 16.2 150.4 -81.3 43.1 -4.2 -9.7 -2.1 31 31 A Y H >> + 0 0 38 -2,-1.1 4,-2.8 -5,-0.2 3,-1.1 0.907 66.9 54.4 -38.2 -66.1 -0.7 -8.4 -1.2 32 32 A E H 3> S+ 0 0 98 -3,-0.3 4,-1.7 1,-0.3 -1,-0.2 0.877 106.8 51.4 -35.6 -58.9 0.2 -7.8 -4.8 33 33 A E H 3> S+ 0 0 65 -3,-0.3 4,-1.6 1,-0.2 -1,-0.3 0.884 113.8 45.3 -48.9 -43.7 -2.9 -5.7 -5.3 34 34 A A H X S+ 0 0 35 -4,-1.7 4,-2.2 1,-0.2 3,-0.6 0.951 103.2 66.7 -58.6 -52.7 0.8 -1.3 -6.3 37 37 A C H 3X S+ 0 0 12 -4,-1.6 4,-1.8 1,-0.3 -1,-0.2 0.837 106.7 43.4 -35.7 -45.8 -1.8 0.8 -4.4 38 38 A H H 3X S+ 0 0 6 -4,-1.8 4,-2.7 -3,-0.5 -1,-0.3 0.883 106.4 60.7 -70.9 -39.7 1.1 2.2 -2.4 39 39 A R H X S+ 0 0 13 -4,-2.0 3,-2.4 1,-0.3 4,-2.3 0.949 105.4 45.1 -50.3 -58.2 2.9 17.1 -5.0 49 49 A M H 3< S+ 0 0 23 -4,-1.7 -1,-0.3 1,-0.3 -2,-0.2 0.827 106.2 62.2 -56.7 -32.6 5.9 18.5 -3.2 50 50 A K T 3< S+ 0 0 146 -4,-0.9 -1,-0.3 -5,-0.3 -2,-0.2 0.417 112.1 39.0 -74.4 3.6 7.5 19.0 -6.6 51 51 A L T <4 S+ 0 0 147 -3,-2.4 -2,-0.2 -4,-0.1 -1,-0.2 0.700 96.0 83.1-117.6 -45.8 4.6 21.4 -7.3 52 52 A T < - 0 0 39 -4,-2.3 -1,-0.0 1,-0.1 6,-0.0 -0.426 58.1-159.0 -66.7 134.0 4.0 23.3 -4.1 53 53 A E + 0 0 200 -2,-0.1 2,-0.2 -3,-0.0 -1,-0.1 0.217 64.2 96.3 -97.1 13.3 6.3 26.3 -3.6 54 54 A S > - 0 0 59 1,-0.1 4,-0.7 -5,-0.1 -3,-0.1 -0.649 66.8-142.5-102.5 160.3 5.6 26.3 0.1 55 55 A E H >> S+ 0 0 158 -2,-0.2 4,-1.8 2,-0.2 3,-0.6 0.961 96.7 44.9 -83.0 -67.8 7.7 24.7 2.9 56 56 A Q H >> S+ 0 0 119 1,-0.3 4,-2.0 2,-0.2 3,-0.8 0.910 110.6 56.6 -41.6 -57.5 5.1 23.4 5.4 57 57 A A H 3> S+ 0 0 11 1,-0.3 4,-0.8 2,-0.2 -1,-0.3 0.892 106.0 50.6 -42.3 -51.3 3.1 21.9 2.6 58 58 A H H XX S+ 0 0 66 -4,-0.7 4,-2.8 -3,-0.6 3,-0.6 0.869 107.4 55.7 -57.2 -38.3 6.1 19.9 1.5 59 59 A L H X S+ 0 0 111 -4,-0.8 4,-2.6 -5,-0.3 3,-1.2 0.883 107.8 36.4 -34.5 -65.8 7.3 7.7 4.9 67 67 A S H 3X S+ 0 0 39 -4,-0.9 4,-2.6 1,-0.3 5,-0.5 0.963 106.8 65.2 -55.6 -57.4 4.5 5.4 5.9 68 68 A H H 3< S+ 0 0 10 -4,-1.8 4,-0.4 1,-0.3 -1,-0.3 0.754 115.6 34.5 -37.6 -28.0 3.2 5.0 2.4 69 69 A M H S+ 0 0 13 -5,-0.5 4,-2.6 -4,-0.4 -2,-0.2 0.938 109.5 42.6 -59.1 -49.4 5.1 -1.2 0.9 73 73 A L H X S+ 0 0 91 -4,-2.3 4,-1.9 2,-0.2 -1,-0.2 0.863 115.5 50.9 -65.8 -36.6 8.4 -2.8 2.1 74 74 A L H X S+ 0 0 72 -4,-1.2 4,-2.0 -5,-0.3 -2,-0.2 0.928 113.1 44.1 -67.0 -46.5 6.5 -4.6 4.8 75 75 A I H X S+ 0 0 7 -4,-3.2 4,-0.7 2,-0.2 -2,-0.2 0.945 111.3 53.9 -63.9 -50.0 3.8 -6.0 2.4 76 76 A Q H >X S+ 0 0 98 -4,-2.6 3,-1.9 -5,-0.2 4,-1.8 0.950 112.9 41.8 -48.9 -60.1 6.3 -7.0 -0.2 77 77 A E H 3X S+ 0 0 75 -4,-1.9 4,-1.5 1,-0.3 -1,-0.2 0.881 109.6 59.1 -56.4 -40.4 8.5 -9.1 2.2 78 78 A R H 3X S+ 0 0 124 -4,-2.0 4,-0.7 -5,-0.2 -1,-0.3 0.626 108.9 48.8 -64.9 -11.8 5.3 -10.4 3.7 79 79 A W H X S+ 0 0 120 -4,-1.5 4,-3.0 -5,-0.3 3,-0.7 0.934 109.2 44.4 -72.6 -48.3 7.4 -15.3 2.4 82 82 A A H 3X>S+ 0 0 17 -4,-0.7 4,-1.4 -3,-0.5 5,-1.0 0.857 101.6 69.2 -64.5 -36.0 3.8 -16.5 1.9 83 83 A K H 3<5S+ 0 0 115 -4,-2.8 4,-0.3 1,-0.2 -1,-0.2 0.858 115.9 25.5 -50.5 -38.5 4.6 -17.5 -1.7 84 84 A R H X5S+ 0 0 120 -4,-3.0 4,-2.8 2,-0.2 3,-1.9 0.992 114.4 46.0 -62.2 -64.5 5.1 -20.8 3.1 86 86 A E H 3X5S+ 0 0 100 -4,-1.4 4,-2.8 1,-0.3 -3,-0.2 0.897 109.7 56.2 -44.9 -49.5 1.5 -20.8 2.0 87 87 A R H 34