==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 17-FEB-93 2CRD . COMPND 2 MOLECULE: CHARYBDOTOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: LEIURUS QUINQUESTRIATUS HEBRAEUS; . AUTHOR F.BONTEMS,C.ROUMESTAND,B.GILQUIN,A.MENEZ,F.TOMA . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3091.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 93 0, 0.0 34,-2.5 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 177.7 1.1 2.6 0.9 2 2 A F B -A 34 0A 170 32,-0.2 2,-0.3 2,-0.0 32,-0.1 -0.574 360.0-172.2 -91.7 152.6 3.4 4.7 -1.2 3 3 A T - 0 0 14 30,-0.8 30,-0.2 -2,-0.2 14,-0.0 -0.973 31.7-127.5-137.6 147.2 5.2 3.7 -4.4 4 4 A N S S+ 0 0 138 -2,-0.3 2,-0.5 28,-0.1 30,-0.1 0.283 76.0 115.8 -80.8 12.9 7.9 5.8 -6.2 5 5 A V - 0 0 34 28,-0.2 28,-3.3 1,-0.0 -2,-0.2 -0.719 54.0-154.9 -85.4 125.2 5.8 5.3 -9.4 6 6 A S - 0 0 73 -2,-0.5 2,-0.3 26,-0.3 26,-0.1 -0.119 17.6-155.6 -83.9-169.4 4.3 8.6 -10.9 7 7 A a - 0 0 41 23,-0.2 3,-0.1 24,-0.1 -1,-0.1 -0.942 38.8-172.6-158.0-178.7 1.2 8.5 -13.0 8 8 A T S S+ 0 0 125 1,-0.4 2,-0.4 -2,-0.3 -1,-0.1 0.312 90.1 23.4-145.9 -45.5 -1.0 10.0 -15.7 9 9 A T S > S- 0 0 71 1,-0.0 3,-2.4 18,-0.0 -1,-0.4 -0.997 78.9-120.9-133.3 135.5 -4.1 7.7 -15.4 10 10 A S T 3> S+ 0 0 66 -2,-0.4 4,-1.5 1,-0.3 3,-0.2 0.699 100.7 86.4 -47.8 -22.1 -5.1 5.7 -12.4 11 11 A K H 3> S+ 0 0 168 1,-0.2 4,-1.2 2,-0.2 -1,-0.3 0.855 86.4 56.8 -48.9 -35.5 -4.9 2.5 -14.5 12 12 A E H <> S+ 0 0 74 -3,-2.4 4,-1.9 1,-0.2 5,-0.2 0.948 98.1 52.3 -67.4 -52.6 -1.2 2.5 -13.6 13 13 A b H > S+ 0 0 0 -4,-0.3 4,-3.1 1,-0.2 5,-0.3 0.905 105.2 63.4 -54.1 -37.9 -1.2 2.4 -9.8 14 14 A W H X S+ 0 0 120 -4,-1.5 4,-2.5 1,-0.2 5,-0.3 0.951 106.7 35.3 -49.9 -67.4 -3.5 -0.6 -10.1 15 15 A S H X S+ 0 0 82 -4,-1.2 4,-2.0 1,-0.2 5,-0.3 0.909 119.0 53.0 -58.3 -41.5 -1.3 -3.1 -11.8 16 16 A V H X S+ 0 0 30 -4,-1.9 4,-2.7 2,-0.2 5,-0.3 0.982 111.8 45.3 -57.3 -56.3 1.8 -1.8 -9.9 17 17 A c H X S+ 0 0 0 -4,-3.1 4,-2.9 -5,-0.2 6,-0.3 0.935 113.0 47.4 -52.6 -57.6 0.1 -2.2 -6.5 18 18 A Q H < S+ 0 0 104 -4,-2.5 -1,-0.2 6,-0.3 5,-0.2 0.840 115.7 46.4 -58.5 -34.1 -1.4 -5.6 -7.1 19 19 A R H < S+ 0 0 206 -4,-2.0 -2,-0.2 -5,-0.3 -1,-0.2 0.962 118.2 39.9 -72.7 -50.4 1.9 -7.0 -8.4 20 20 A L H < S+ 0 0 90 -4,-2.7 2,-0.2 -5,-0.3 -2,-0.2 0.917 130.0 10.5 -63.2 -48.5 4.2 -5.5 -5.7 21 21 A H S < S- 0 0 91 -4,-2.9 2,-2.2 -5,-0.3 0, 0.0 -0.750 94.1 -85.9-126.3 173.0 1.9 -6.1 -2.7 22 22 A N S S+ 0 0 168 -2,-0.2 2,-0.2 2,-0.0 -4,-0.2 -0.506 92.9 99.3 -82.4 74.2 -1.3 -8.1 -2.2 23 23 A T - 0 0 18 -2,-2.2 14,-0.1 -6,-0.3 3,-0.1 -0.664 43.9-178.3-138.5-166.6 -3.6 -5.3 -3.3 24 24 A S + 0 0 60 12,-0.7 -6,-0.3 1,-0.4 2,-0.3 0.112 60.6 91.2-165.0 -48.4 -5.5 -4.2 -6.3 25 25 A R + 0 0 147 11,-0.2 11,-2.4 -8,-0.1 -1,-0.4 -0.459 51.6 155.0 -68.9 127.9 -7.1 -0.9 -5.4 26 26 A G E +B 35 0A 11 -2,-0.3 2,-0.3 9,-0.2 9,-0.2 -0.981 19.2 179.6-151.8 159.7 -5.0 2.1 -6.2 27 27 A K E -B 34 0A 85 7,-2.7 7,-1.5 -2,-0.3 2,-0.3 -0.959 23.2-123.5-160.6 144.6 -5.3 5.8 -7.0 28 28 A a E -B 33 0A 33 -2,-0.3 2,-0.3 5,-0.3 5,-0.3 -0.680 11.0-160.5-103.8 155.8 -2.9 8.5 -7.8 29 29 A M - 0 0 95 3,-3.1 3,-0.4 -2,-0.3 -22,-0.1 -0.894 44.1 -99.3-122.6 149.6 -2.1 11.9 -6.3 30 30 A N S S+ 0 0 165 -2,-0.3 -23,-0.2 1,-0.2 3,-0.1 0.748 124.8 53.1 -43.1 -30.8 -0.2 14.6 -8.2 31 31 A K S S- 0 0 177 1,-0.3 2,-0.3 -25,-0.1 -1,-0.2 0.964 127.0 -38.8 -74.0 -51.9 2.9 13.5 -6.4 32 32 A K - 0 0 96 -3,-0.4 -3,-3.1 -26,-0.1 -26,-0.3 -0.954 66.5 -77.2-161.9 178.6 2.8 9.8 -7.3 33 33 A b E - B 0 28A 1 -28,-3.3 -30,-0.8 -2,-0.3 2,-0.3 -0.584 51.5-160.6 -81.8 152.0 0.5 6.8 -7.8 34 34 A R E -AB 2 27A 45 -7,-1.5 -7,-2.7 -2,-0.2 2,-0.3 -0.985 6.9-137.4-138.1 149.7 -0.5 5.4 -4.4 35 35 A c E - B 0 26A 1 -34,-2.5 2,-0.3 -2,-0.3 -9,-0.2 -0.732 12.6-166.6-108.1 157.0 -1.9 2.1 -3.3 36 36 A Y 0 0 99 -11,-2.4 -12,-0.7 -2,-0.3 -11,-0.2 -0.947 360.0 360.0-136.8 154.5 -4.7 1.1 -0.9 37 37 A S 0 0 100 -2,-0.3 -14,-0.1 -14,-0.1 -11,-0.1 -0.554 360.0 360.0 -64.3 360.0 -5.7 -2.1 0.7