==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATION/DNA 22-APR-98 6CRO . COMPND 2 MOLECULE: DNA (5'- . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.A.ALBRIGHT,B.W.MATTHEWS . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4773.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 18.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A E 0 0 210 0, 0.0 44,-0.1 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 83.3 12.0 54.8 89.8 2 3 A Q - 0 0 140 39,-0.1 41,-2.0 42,-0.1 2,-0.6 0.504 360.0-178.2 -87.1 146.1 13.5 57.1 90.3 3 4 A R E +A 42 0A 138 39,-0.2 2,-0.4 -2,-0.1 39,-0.2 -0.886 18.4 164.7-100.9 124.8 15.4 57.2 87.0 4 5 A I E -A 41 0A 20 37,-2.2 37,-2.9 -2,-0.6 2,-0.1 -0.995 35.5-105.9-146.6 155.0 17.8 60.0 87.0 5 6 A T E > -A 40 0A 46 -2,-0.4 4,-3.2 35,-0.2 5,-0.3 -0.377 23.7-127.0 -71.5 147.9 20.8 61.3 85.2 6 7 A L H > S+ 0 0 12 33,-2.4 4,-4.3 2,-0.2 5,-0.2 0.985 111.4 45.2 -58.0 -58.4 24.3 61.2 86.5 7 8 A K H > S+ 0 0 122 1,-0.3 4,-3.1 32,-0.2 -1,-0.2 0.925 115.8 49.5 -45.6 -52.2 24.9 64.9 85.9 8 9 A D H > S+ 0 0 59 2,-0.3 4,-2.7 1,-0.2 -1,-0.3 0.925 111.0 46.9 -50.4 -57.4 21.6 65.6 87.4 9 10 A Y H X S+ 0 0 13 -4,-3.2 4,-3.3 1,-0.3 5,-0.3 0.922 111.5 54.5 -57.6 -42.5 22.1 63.5 90.4 10 11 A A H X S+ 0 0 7 -4,-4.3 4,-2.9 -5,-0.3 -2,-0.3 0.914 104.9 51.1 -62.7 -40.8 25.4 65.2 90.7 11 12 A M H < S+ 0 0 140 -4,-3.1 -1,-0.2 -5,-0.2 -2,-0.2 0.946 114.6 44.4 -65.6 -37.3 23.9 68.6 90.7 12 13 A R H < S+ 0 0 161 -4,-2.7 -2,-0.2 -5,-0.2 -1,-0.2 0.962 127.0 26.8 -66.7 -51.0 21.5 67.6 93.4 13 14 A F H < S- 0 0 97 -4,-3.3 4,-0.4 -5,-0.2 -3,-0.2 0.674 106.3-107.4 -88.9 -21.3 24.0 65.8 95.6 14 15 A G X - 0 0 30 -4,-2.9 4,-1.6 -5,-0.3 3,-0.4 0.237 35.5 -90.4 98.0 128.9 27.4 67.2 95.0 15 16 A Q H > S+ 0 0 55 1,-0.2 4,-3.4 2,-0.2 5,-0.2 0.867 120.4 54.7 -42.1 -45.9 30.1 65.3 93.1 16 17 A T H > S+ 0 0 91 2,-0.2 4,-4.0 1,-0.2 -1,-0.2 0.904 105.2 45.3 -57.7 -57.0 31.5 63.7 96.2 17 18 A K H > S+ 0 0 85 -4,-0.4 4,-4.6 -3,-0.4 -1,-0.2 0.952 117.4 48.4 -55.1 -52.2 28.5 61.9 97.7 18 19 A T H X S+ 0 0 0 -4,-1.6 4,-2.3 2,-0.3 5,-0.4 0.977 111.8 47.4 -45.0 -71.7 27.6 60.7 94.3 19 20 A A H X>S+ 0 0 2 -4,-3.4 4,-1.1 1,-0.3 5,-1.1 0.924 113.0 50.0 -38.9 -54.6 31.0 59.5 93.6 20 21 A K H ><5S+ 0 0 156 -4,-4.0 3,-2.6 1,-0.3 -1,-0.3 0.977 105.4 57.9 -54.3 -52.1 31.0 57.9 96.9 21 22 A D H 3<5S+ 0 0 47 -4,-4.6 -1,-0.3 1,-0.3 -2,-0.3 0.884 108.9 44.9 -52.7 -32.4 27.7 56.3 96.1 22 23 A L H 3<5S- 0 0 56 -4,-2.3 -1,-0.3 -3,-0.5 -2,-0.2 0.598 112.6-118.9 -89.9 4.5 29.1 54.7 93.2 23 24 A G T <<5S+ 0 0 66 -3,-2.6 2,-0.3 -4,-1.1 -3,-0.2 0.998 76.3 106.4 63.6 61.5 32.2 53.6 94.9 24 25 A V S > - 0 0 194 -2,-0.3 3,-2.9 1,-0.1 4,-0.8 -0.536 33.6-125.5 -75.0 132.5 36.7 58.5 93.0 26 27 A Q H 3> S+ 0 0 86 -2,-0.3 4,-2.4 1,-0.3 5,-0.2 0.768 109.8 62.4 -33.0 -51.5 35.2 62.0 92.7 27 28 A S H 3> S+ 0 0 77 2,-0.2 4,-3.6 1,-0.2 -1,-0.3 0.889 98.9 59.5 -50.9 -37.2 37.5 62.9 89.9 28 29 A A H <> S+ 0 0 35 -3,-2.9 4,-3.5 2,-0.2 5,-0.4 0.994 105.6 46.1 -52.4 -68.6 35.9 60.1 88.0 29 30 A I H X S+ 0 0 5 -4,-0.8 4,-2.9 1,-0.3 5,-0.3 0.899 113.0 49.5 -34.4 -73.9 32.6 61.6 88.2 30 31 A N H X S+ 0 0 58 -4,-2.4 4,-3.4 1,-0.3 5,-0.4 0.842 115.0 42.9 -31.4 -63.1 33.9 64.9 87.2 31 32 A K H X S+ 0 0 166 -4,-3.6 4,-4.0 1,-0.3 -1,-0.3 0.948 113.8 53.0 -46.4 -58.7 35.7 63.5 84.3 32 33 A A H X>S+ 0 0 8 -4,-3.5 5,-1.8 1,-0.2 4,-0.6 0.757 112.6 45.0 -46.4 -42.2 32.7 61.4 83.4 33 34 A I H ><5S+ 0 0 34 -4,-2.9 3,-1.6 -5,-0.4 -1,-0.2 0.940 114.7 43.3 -75.2 -54.3 30.5 64.3 83.5 34 35 A H H 3<5S+ 0 0 135 -4,-3.4 -2,-0.2 -5,-0.3 -3,-0.2 0.911 106.6 68.4 -58.7 -31.5 32.6 66.7 81.6 35 36 A A H 3<5S- 0 0 64 -4,-4.0 -1,-0.3 -5,-0.4 -2,-0.2 0.732 105.1-130.1 -52.6 -33.7 33.1 63.8 79.4 36 37 A G T <<5 + 0 0 59 -3,-1.6 -3,-0.2 -4,-0.6 2,-0.2 0.801 44.0 168.7 81.6 27.7 29.6 63.9 78.3 37 38 A R < - 0 0 134 -5,-1.8 2,-0.8 1,-0.1 -1,-0.2 -0.512 38.4-122.9 -72.2 142.1 29.1 60.2 79.0 38 39 A K E + B 0 54A 152 16,-0.6 16,-2.3 -2,-0.2 2,-0.4 -0.776 51.3 155.9 -88.7 107.8 25.4 59.1 78.8 39 40 A I E - B 0 53A 22 -2,-0.8 -33,-2.4 14,-0.2 2,-0.5 -0.991 26.0-160.4-143.3 148.2 24.8 57.6 82.2 40 41 A F E -AB 5 52A 39 12,-3.3 12,-2.1 -2,-0.4 2,-0.3 -0.970 7.3-150.2-139.5 143.4 22.0 56.9 84.4 41 42 A L E -AB 4 51A 1 -37,-2.9 -37,-2.2 -2,-0.5 2,-0.4 -0.690 7.5-156.5 -99.0 154.8 21.4 56.2 87.9 42 43 A T E -AB 3 50A 40 8,-1.4 8,-1.7 -2,-0.3 2,-0.4 -0.999 11.2-153.0-133.0 121.1 18.6 54.1 89.3 43 44 A I E - B 0 49A 39 -41,-2.0 2,-0.3 -2,-0.4 6,-0.2 -0.786 7.3-156.2 -99.9 144.2 17.6 54.6 92.9 44 45 A N > - 0 0 66 4,-1.6 3,-1.8 -2,-0.4 -42,-0.1 -0.759 37.0 -93.0-114.9 162.4 16.0 52.0 95.0 45 46 A A T 3 S+ 0 0 115 1,-0.3 -1,-0.1 -2,-0.3 -2,-0.0 0.854 127.9 44.7 -27.8 -71.8 13.8 52.2 98.0 46 47 A D T 3 S- 0 0 135 1,-0.1 -1,-0.3 -3,-0.0 3,-0.1 0.726 120.8-108.1 -52.9 -27.0 16.7 51.9 100.4 47 48 A G < + 0 0 38 -3,-1.8 -2,-0.1 1,-0.3 -1,-0.1 0.604 67.5 147.4 106.0 11.9 18.7 54.4 98.3 48 49 A S - 0 0 55 -4,-0.1 -4,-1.6 1,-0.0 2,-0.4 -0.435 38.1-136.9 -73.0 155.1 21.2 52.1 96.8 49 50 A V E -B 43 0A 31 -28,-0.3 2,-0.4 -6,-0.2 -6,-0.2 -0.890 20.8-171.4-124.6 151.9 22.2 53.1 93.4 50 51 A Y E -B 42 0A 138 -8,-1.7 -8,-1.4 -2,-0.4 2,-0.5 -0.981 8.9-165.7-134.5 138.4 22.8 51.5 90.2 51 52 A A E +B 41 0A 35 -2,-0.4 2,-0.3 -10,-0.2 -10,-0.2 -0.930 9.5 176.1-131.6 132.8 24.3 53.0 87.1 52 53 A E E -B 40 0A 88 -12,-2.1 -12,-3.3 -2,-0.5 2,-0.3 -0.833 16.6-145.6-121.1 159.3 24.4 51.9 83.6 53 54 A E E -B 39 0A 59 -2,-0.3 2,-0.5 -14,-0.2 -14,-0.2 -0.927 7.0-139.7-122.6 146.2 25.9 53.8 80.6 54 55 A V E +B 38 0A 83 -16,-2.3 -16,-0.6 -2,-0.3 -2,-0.0 -0.911 27.0 171.1-110.3 131.9 24.8 53.9 77.0 55 56 A K - 0 0 128 -2,-0.5 2,-0.2 -18,-0.1 4,-0.1 -0.991 31.9-111.6-144.0 150.9 27.3 53.9 74.2 56 57 A P - 0 0 103 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 -0.399 46.6 -95.8 -77.6 142.7 27.4 53.6 70.5 57 58 A F S S+ 0 0 183 1,-0.2 2,-0.1 -2,-0.2 0, 0.0 -0.911 104.1 37.7-106.5 132.8 28.8 50.6 69.0 58 59 A P S S- 0 0 83 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 0.514 75.4-147.2 -90.9 153.4 31.6 50.5 68.1 59 60 A S 0 0 81 1,-0.1 -2,-0.1 -4,-0.1 0, 0.0 0.714 360.0 360.0 -46.3 -37.3 33.4 52.5 70.8 60 61 A N 0 0 187 0, 0.0 -1,-0.1 0, 0.0 -3,-0.0 0.925 360.0 360.0 -59.0 360.0 36.0 53.9 68.3