==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEINASE INHIBITOR (TRYPSIN) 27-MAR-91 3CTI . COMPND 2 MOLECULE: TRYPSIN INHIBITOR; . SOURCE 2 ORGANISM_SCIENTIFIC: CUCURBITA MAXIMA; . AUTHOR M.NILGES,J.HABAZETTL,A.T.BRUENGER,T.A.HOLAK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2913.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 44.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 274 0, 0.0 2,-1.3 0, 0.0 19,-0.0 0.000 360.0 360.0 360.0 23.5 4.6 6.1 -9.7 2 2 A V + 0 0 110 1,-0.1 17,-1.7 18,-0.0 18,-0.3 -0.609 360.0 128.9 -77.9 97.3 6.9 6.7 -6.7 3 3 A a - 0 0 43 -2,-1.3 15,-0.1 15,-0.2 -1,-0.1 -0.601 44.8-153.1-153.0 85.5 6.3 3.5 -4.8 4 4 A P - 0 0 85 0, 0.0 2,-0.6 0, 0.0 13,-0.1 -0.327 34.4-106.0 -57.8 145.7 9.3 1.3 -3.5 5 5 A R + 0 0 253 24,-0.0 2,-0.3 2,-0.0 24,-0.1 -0.641 52.6 160.7 -76.4 114.3 8.3 -2.4 -3.2 6 6 A I - 0 0 108 -2,-0.6 22,-0.2 22,-0.1 2,-0.2 -0.825 41.0-128.3-141.6 100.9 8.0 -3.1 0.6 7 7 A L + 0 0 152 -2,-0.3 2,-0.3 20,-0.1 22,-0.1 -0.235 55.1 138.2 -45.9 103.7 6.1 -6.2 1.8 8 8 A M - 0 0 71 20,-0.2 20,-1.8 -2,-0.2 -2,-0.1 -0.965 53.2-116.0-153.0 139.9 3.6 -4.7 4.4 9 9 A E B -A 27 0A 149 -2,-0.3 2,-0.3 18,-0.2 18,-0.3 -0.380 33.7-160.6 -73.6 157.0 -0.1 -5.3 5.1 10 10 A b - 0 0 13 16,-1.7 3,-0.1 13,-0.1 4,-0.0 -1.000 26.5-167.4-142.6 141.9 -2.5 -2.3 4.5 11 11 A K S S- 0 0 191 1,-0.3 2,-0.3 -2,-0.3 -1,-0.1 0.689 81.8 -11.3 -97.2 -23.4 -6.0 -1.4 5.7 12 12 A K S >> S- 0 0 129 1,-0.1 3,-1.3 14,-0.1 4,-0.6 -0.974 82.8 -84.0-165.6 165.4 -6.4 1.5 3.3 13 13 A D G >4 S+ 0 0 92 -2,-0.3 3,-1.4 1,-0.3 -1,-0.1 0.868 123.4 58.2 -48.8 -40.9 -4.4 3.6 0.8 14 14 A S G 34 S+ 0 0 81 1,-0.2 -1,-0.3 -3,-0.0 6,-0.1 0.852 91.2 70.2 -61.3 -32.1 -3.2 6.0 3.6 15 15 A D G <4 S+ 0 0 60 -3,-1.3 -1,-0.2 2,-0.0 -2,-0.2 0.802 93.6 70.5 -55.8 -26.0 -1.7 3.0 5.5 16 16 A c S << S- 0 0 10 -3,-1.4 2,-0.1 -4,-0.6 6,-0.1 -0.533 84.1-121.7 -92.1 159.7 1.0 2.8 2.7 17 17 A L S > S+ 0 0 116 -2,-0.2 3,-1.5 -13,-0.1 -1,-0.1 -0.386 71.7 5.3 -93.0 168.3 3.8 5.4 2.1 18 18 A A T 3 S- 0 0 66 1,-0.2 -15,-0.2 -2,-0.1 -2,-0.1 0.034 124.1 -38.8 50.1-163.1 4.5 7.4 -1.1 19 19 A E T 3 S+ 0 0 147 -17,-1.7 -1,-0.2 2,-0.0 -16,-0.2 0.255 99.9 133.4 -77.1 18.1 1.9 7.1 -4.0 20 20 A a < - 0 0 17 -3,-1.5 2,-0.3 -18,-0.3 -4,-0.1 -0.197 42.5-151.9 -62.9 163.7 1.6 3.3 -3.1 21 21 A V - 0 0 62 6,-0.1 8,-2.1 -6,-0.1 2,-0.6 -0.931 17.8-109.3-136.2 161.9 -2.0 1.9 -2.9 22 22 A b B -B 28 0B 31 -2,-0.3 6,-0.2 6,-0.2 -9,-0.2 -0.809 33.9-155.7 -94.9 117.6 -3.7 -1.0 -1.0 23 23 A L > - 0 0 94 4,-2.0 3,-1.4 -2,-0.6 4,-0.2 -0.294 32.9 -98.5 -83.8 174.8 -4.7 -3.9 -3.3 24 24 A E T 3 S+ 0 0 183 1,-0.3 -1,-0.1 2,-0.1 -2,-0.0 0.850 118.5 68.7 -64.2 -34.7 -7.5 -6.4 -2.5 25 25 A H T 3 S- 0 0 161 2,-0.1 -1,-0.3 1,-0.1 3,-0.1 0.641 117.9-112.3 -60.7 -7.3 -5.1 -9.1 -1.2 26 26 A G S < S+ 0 0 22 -3,-1.4 -16,-1.7 1,-0.3 2,-0.3 0.806 80.9 107.8 82.6 30.9 -4.5 -6.6 1.6 27 27 A Y B S-A 9 0A 103 -18,-0.3 -4,-2.0 -4,-0.2 -1,-0.3 -0.963 74.7-101.7-135.3 151.5 -0.9 -5.5 0.9 28 28 A c B B 22 0B 25 -20,-1.8 -20,-0.2 -2,-0.3 -6,-0.2 -0.481 360.0 360.0 -70.6 146.2 0.6 -2.3 -0.5 29 29 A G 0 0 65 -8,-2.1 -7,-0.2 -2,-0.1 -1,-0.1 0.395 360.0 360.0 176.9 360.0 1.6 -2.6 -4.3