==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 25-AUG-99 1CW6 . COMPND 2 MOLECULE: TYPE IIA BACTERIOCIN LEUCOCIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: LEUCONOSTOC GELIDUM; . AUTHOR Y.WANG,M.E.HENZ,N.L.F.GALLAGHER,S.CHAI,L.Z.YAN,A.C.GIBBS, . 37 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3466.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 64.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 27.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 152 0, 0.0 8,-0.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 111.5 -7.2 -5.4 5.8 2 2 A Y B -A 8 0A 100 6,-0.2 6,-0.2 1,-0.1 4,-0.0 -0.591 360.0-159.1 -80.6 139.7 -4.0 -4.0 4.3 3 3 A Y - 0 0 152 4,-1.7 -1,-0.1 -2,-0.3 5,-0.1 -0.220 48.1-105.0-109.7 40.3 -3.3 -4.8 0.7 4 4 A G S S+ 0 0 58 1,-0.1 4,-0.1 3,-0.1 -2,-0.1 0.681 111.2 81.7 46.0 18.8 0.4 -4.1 0.8 5 5 A N S S- 0 0 123 2,-0.2 16,-0.2 19,-0.0 -1,-0.1 -0.293 118.7 -87.6-145.8 52.4 -0.4 -0.9 -0.9 6 6 A G S S+ 0 0 0 14,-0.3 12,-0.7 1,-0.2 2,-0.4 0.854 92.3 128.5 42.1 41.9 -1.6 1.6 1.7 7 7 A V + 0 0 39 9,-0.2 -4,-1.7 13,-0.1 2,-0.4 -0.950 28.9 165.4-132.6 112.9 -5.1 0.2 1.2 8 8 A H E -AB 2 15A 21 7,-2.4 7,-3.3 -2,-0.4 2,-0.8 -0.950 30.7-139.7-128.0 147.6 -7.1 -1.0 4.1 9 9 A a E + B 0 14A 16 -8,-0.5 3,-0.4 -2,-0.4 5,-0.3 -0.858 30.8 178.3-109.7 97.9 -10.8 -1.8 4.4 10 10 A T E > + B 0 13A 84 3,-1.9 3,-1.0 -2,-0.8 -2,-0.0 -0.629 63.1 2.0 -98.9 158.4 -12.1 -0.5 7.7 11 11 A K T 3 S- 0 0 187 1,-0.3 -1,-0.2 -2,-0.2 3,-0.1 0.749 138.2 -50.6 36.1 34.8 -15.6 -0.6 9.2 12 12 A S T 3 S+ 0 0 122 -3,-0.4 2,-0.3 1,-0.2 -1,-0.3 0.910 120.6 102.1 74.0 47.0 -16.5 -2.5 6.0 13 13 A G E < -B 10 0A 31 -3,-1.0 -3,-1.9 2,-0.0 2,-0.5 -0.891 64.0-134.2-161.9 127.2 -15.0 -0.1 3.6 14 14 A a E +B 9 0A 90 -5,-0.3 -5,-0.3 -2,-0.3 2,-0.3 -0.725 40.7 147.6 -88.5 126.6 -11.7 -0.0 1.5 15 15 A S E -B 8 0A 79 -7,-3.3 -7,-2.4 -2,-0.5 2,-0.5 -0.888 42.4-112.1-146.6 173.7 -9.8 3.2 1.6 16 16 A V - 0 0 35 -2,-0.3 -9,-0.2 -9,-0.2 3,-0.1 -0.959 6.5-164.7-120.8 121.9 -6.3 4.6 1.5 17 17 A N - 0 0 108 -2,-0.5 2,-3.4 -11,-0.3 -1,-0.1 0.681 25.9-164.6 -70.9 -16.4 -4.6 6.3 4.4 18 18 A W S > S+ 0 0 184 -12,-0.7 4,-5.0 1,-0.3 5,-0.4 -0.324 81.7 64.0 64.1 -65.1 -2.1 7.5 1.7 19 19 A G H > S+ 0 0 50 -2,-3.4 4,-1.2 1,-0.3 -1,-0.3 0.852 104.7 49.2 -53.8 -30.3 0.4 8.5 4.3 20 20 A E H > S+ 0 0 89 2,-0.2 4,-0.9 1,-0.2 -14,-0.3 0.893 115.3 42.0 -73.7 -40.7 0.5 4.8 5.1 21 21 A A H > S+ 0 0 18 -15,-0.3 4,-3.4 2,-0.2 3,-0.3 0.900 110.1 57.2 -71.0 -41.8 0.9 4.0 1.4 22 22 A F H X S+ 0 0 150 -4,-5.0 4,-2.6 1,-0.3 -1,-0.2 0.852 105.9 50.8 -57.2 -36.1 3.4 6.7 1.0 23 23 A S H X S+ 0 0 45 -4,-1.2 4,-1.3 -5,-0.4 -1,-0.3 0.813 111.1 49.8 -70.9 -29.6 5.4 5.1 3.7 24 24 A A H X S+ 0 0 34 -4,-0.9 4,-1.7 -3,-0.3 -2,-0.2 0.931 112.6 45.2 -73.0 -47.7 5.1 1.9 1.7 25 25 A G H X S+ 0 0 37 -4,-3.4 4,-3.8 1,-0.2 5,-0.3 0.926 111.1 52.4 -62.3 -47.2 6.2 3.4 -1.5 26 26 A V H X S+ 0 0 50 -4,-2.6 4,-3.6 1,-0.2 -1,-0.2 0.876 106.5 54.2 -58.2 -38.1 9.1 5.3 0.0 27 27 A H H < S+ 0 0 133 -4,-1.3 -1,-0.2 1,-0.2 4,-0.2 0.923 116.8 37.7 -62.0 -42.1 10.3 2.0 1.6 28 28 A R H X S+ 0 0 173 -4,-1.7 4,-0.5 2,-0.2 -2,-0.2 0.881 125.6 39.0 -73.7 -42.5 10.3 0.4 -1.9 29 29 A L H >< S+ 0 0 141 -4,-3.8 3,-0.9 1,-0.2 -3,-0.2 0.930 115.4 49.3 -73.8 -51.1 11.5 3.6 -3.7 30 30 A A T 3< S+ 0 0 69 -4,-3.6 3,-0.3 -5,-0.3 -1,-0.2 0.465 98.7 72.7 -70.9 -1.2 14.1 4.8 -1.1 31 31 A N T 34 S+ 0 0 64 1,-0.2 2,-1.9 -5,-0.2 -1,-0.2 0.841 82.1 68.6 -82.0 -35.2 15.6 1.3 -1.0 32 32 A G << + 0 0 62 -3,-0.9 2,-1.1 -4,-0.5 -1,-0.2 -0.360 62.7 146.5 -82.5 59.7 17.2 1.5 -4.4 33 33 A G S S- 0 0 44 -2,-1.9 2,-3.6 2,-0.5 -1,-0.1 -0.643 79.8 -77.8 -99.2 78.6 19.8 4.1 -3.4 34 34 A N S S- 0 0 183 -2,-1.1 2,-0.2 2,-0.0 -1,-0.1 -0.262 105.1 -22.0 66.1 -61.1 22.8 3.2 -5.4 35 35 A G S S+ 0 0 42 -2,-3.6 -2,-0.5 1,-0.1 0, 0.0 -0.552 80.2 106.8-148.5-146.0 23.7 0.3 -3.1 36 36 A F 0 0 206 -2,-0.2 -3,-0.2 -4,-0.1 -1,-0.1 0.984 360.0 360.0 55.6 80.8 23.2 -1.1 0.4 37 37 A W 0 0 295 -5,-0.1 -4,-0.0 0, 0.0 -2,-0.0 0.983 360.0 360.0 -77.1 360.0 20.8 -4.0 -0.2