==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 31-AUG-99 1CXW . COMPND 2 MOLECULE: HUMAN MATRIX METALLOPROTEINASE 2; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR K.BRIKNAROVA,A.GRISHAEV,L.BANYAI,H.TORDAI,L.PATTHY,M.LLINAS . 60 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3748.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 41.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 18.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 135 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 164.2 11.4 3.1 9.0 2 2 A A - 0 0 56 1,-0.0 2,-0.4 54,-0.0 0, 0.0 -0.302 360.0-102.5 -83.6 175.7 9.2 5.7 7.6 3 3 A L + 0 0 36 12,-0.1 2,-0.2 -2,-0.1 53,-0.1 -0.895 44.6 160.4-111.9 135.6 7.2 5.0 4.4 4 4 A F - 0 0 112 -2,-0.4 51,-0.4 51,-0.4 11,-0.2 -0.739 48.3-112.2-135.9 176.6 8.1 6.3 1.0 5 5 A T > + 0 0 26 -2,-0.2 3,-2.2 7,-0.2 50,-1.9 0.950 48.7 163.5 -81.4 -47.6 7.0 4.9 -2.5 6 6 A M T 3 S+ 0 0 106 1,-0.3 3,-0.1 48,-0.1 -2,-0.1 0.803 86.7 0.3 26.8 71.4 10.5 3.7 -3.4 7 7 A G T 3 S+ 0 0 65 1,-0.5 -1,-0.3 48,-0.1 -2,-0.1 -0.287 115.0 118.5 119.8 -36.8 9.3 1.4 -6.3 8 8 A G < - 0 0 17 -3,-2.2 -1,-0.5 1,-0.1 46,-0.2 0.108 62.0-141.7 -51.6 163.4 5.7 2.4 -5.6 9 9 A N + 0 0 69 44,-1.9 2,-2.1 1,-0.1 45,-0.2 0.376 65.9 111.5-115.4 -0.8 3.6 4.2 -8.2 10 10 A A S > S- 0 0 2 43,-2.0 3,-2.9 3,-0.2 -1,-0.1 -0.288 96.3 -96.3 -79.8 56.9 1.7 6.7 -6.0 11 11 A E T 3 S- 0 0 139 -2,-2.1 -1,-0.1 1,-0.3 -2,-0.1 0.728 80.1 -55.3 37.0 42.9 3.3 9.8 -7.3 12 12 A G T 3 S+ 0 0 54 1,-0.3 -1,-0.3 -4,-0.1 -7,-0.2 0.379 97.8 144.5 81.0 -5.1 5.9 10.0 -4.5 13 13 A Q < - 0 0 116 -3,-2.9 -1,-0.3 -9,-0.1 -3,-0.2 -0.431 50.7-119.9 -68.8 139.8 3.3 10.0 -1.7 14 14 A P - 0 0 70 0, 0.0 -10,-0.2 0, 0.0 -9,-0.1 -0.393 50.2 -69.3 -71.3 156.0 4.2 8.1 1.5 15 15 A a - 0 0 15 40,-0.2 2,-0.5 -11,-0.2 28,-0.2 -0.034 47.5-135.2 -46.4 146.7 2.0 5.2 2.6 16 16 A K - 0 0 95 26,-2.9 26,-0.3 28,-0.1 28,-0.2 -0.934 20.2-137.6-112.9 129.2 -1.5 5.9 3.7 17 17 A F S S+ 0 0 52 -2,-0.5 10,-0.2 1,-0.3 3,-0.1 -0.957 83.2 28.5-129.0 144.2 -2.9 4.3 6.8 18 18 A P S S+ 0 0 77 0, 0.0 2,-0.4 0, 0.0 -1,-0.3 0.672 83.6 173.7 -74.1 137.1 -5.6 3.1 7.3 19 19 A F E -A 26 0A 1 7,-2.5 7,-3.0 -3,-0.2 2,-0.4 -0.865 26.6-130.0-109.1 144.8 -6.1 2.2 3.6 20 20 A R E +Ab 25 46A 105 25,-2.1 27,-2.8 -2,-0.4 28,-0.9 -0.799 34.6 159.8 -96.9 133.6 -9.1 0.3 2.3 21 21 A F E > +A 24 0A 27 3,-3.0 3,-2.7 -2,-0.4 -2,-0.0 -0.976 68.4 6.6-151.5 141.9 -8.5 -2.7 0.0 22 22 A Q T 3 S- 0 0 107 -2,-0.3 3,-0.1 1,-0.3 -1,-0.0 0.857 128.3 -66.3 50.9 35.2 -10.8 -5.7 -0.8 23 23 A G T 3 S+ 0 0 62 1,-0.2 2,-0.3 0, 0.0 -1,-0.3 0.617 118.5 111.1 65.2 9.3 -13.5 -3.8 1.3 24 24 A T E < -A 21 0A 73 -3,-2.7 -3,-3.0 -5,-0.0 2,-0.4 -0.884 68.8-125.6-116.5 142.4 -11.2 -4.4 4.3 25 25 A S E -A 20 0A 68 -2,-0.3 2,-0.4 -5,-0.2 -5,-0.2 -0.803 23.4-164.9 -97.4 135.4 -9.2 -1.7 6.2 26 26 A Y E +A 19 0A 30 -7,-3.0 -7,-2.5 -2,-0.4 16,-0.1 -0.965 21.1 178.0-121.2 133.2 -5.5 -2.1 6.6 27 27 A D S S+ 0 0 112 -2,-0.4 2,-0.3 -9,-0.2 -10,-0.1 -0.121 72.2 42.8-120.9 29.2 -3.2 -0.1 9.0 28 28 A S S S- 0 0 72 -9,-0.1 -9,-0.1 12,-0.1 12,-0.1 -0.980 98.4 -63.6-165.6 165.6 -0.1 -2.0 8.0 29 29 A b - 0 0 17 31,-0.3 2,-0.3 -2,-0.3 12,-0.2 -0.303 49.8-163.1 -57.4 133.8 2.0 -3.4 5.1 30 30 A T B -C 40 0B 14 10,-2.8 10,-2.5 2,-0.1 26,-0.1 -0.804 25.2-160.2-120.8 163.2 0.3 -6.2 3.1 31 31 A T > + 0 0 55 -2,-0.3 3,-2.5 8,-0.2 2,-0.2 0.261 46.4 136.3-117.0 0.5 1.6 -8.9 0.7 32 32 A E T 3 S+ 0 0 64 1,-0.3 -2,-0.1 8,-0.1 8,-0.1 -0.359 77.2 10.5 -60.5 122.2 -1.8 -9.6 -0.9 33 33 A G T 3 S+ 0 0 82 -2,-0.2 2,-0.6 1,-0.2 -1,-0.3 0.325 104.1 106.1 93.6 -5.6 -1.4 -9.8 -4.7 34 34 A R < + 0 0 58 -3,-2.5 3,-0.3 1,-0.1 -1,-0.2 -0.928 29.8 165.3-115.9 120.6 2.4 -9.9 -4.7 35 35 A T + 0 0 152 -2,-0.6 -1,-0.1 1,-0.1 -3,-0.0 0.019 67.1 82.9-111.4 21.4 4.2 -13.1 -5.4 36 36 A D S S- 0 0 69 2,-0.2 -1,-0.1 0, 0.0 3,-0.1 0.358 109.7-104.3-107.2 1.4 7.5 -11.2 -5.9 37 37 A G S S+ 0 0 50 1,-0.3 2,-0.2 -3,-0.3 -2,-0.1 0.145 81.8 119.6 101.4 -20.7 8.4 -11.0 -2.2 38 38 A Y - 0 0 112 20,-0.1 2,-0.4 -7,-0.1 -1,-0.3 -0.475 52.3-143.1 -89.1 154.6 7.5 -7.3 -1.7 39 39 A R E - D 0 56B 37 17,-0.5 17,-3.1 -2,-0.2 2,-0.3 -0.929 20.6-166.1-116.6 136.2 4.9 -5.8 0.7 40 40 A W E -CD 30 55B 9 -10,-2.5 -10,-2.8 -2,-0.4 2,-0.3 -0.774 11.2-152.5-121.5 165.1 2.9 -2.8 -0.3 41 41 A a E - D 0 54B 0 13,-2.3 13,-2.6 -2,-0.3 2,-0.1 -0.960 26.4-111.6-132.5 150.4 0.6 -0.2 1.2 42 42 A G E - D 0 53B 0 -2,-0.3 -26,-2.9 -26,-0.3 11,-0.2 -0.421 16.8-152.5 -75.3 160.3 -2.3 1.8 -0.2 43 43 A T S S+ 0 0 17 9,-1.6 2,-0.3 -28,-0.2 10,-0.1 0.086 71.3 46.7-123.1 22.0 -1.7 5.6 -0.7 44 44 A T S S- 0 0 29 -28,-0.2 3,-0.2 8,-0.2 -24,-0.2 -0.856 94.6 -95.3-145.5 179.7 -5.3 6.8 -0.4 45 45 A E S S+ 0 0 151 1,-0.3 -25,-2.1 -2,-0.3 2,-0.5 0.918 118.7 28.3 -63.6 -45.9 -8.4 6.3 1.8 46 46 A D B > +b 20 0A 40 -27,-0.2 4,-2.1 1,-0.1 -1,-0.3 -0.945 58.2 178.6-126.0 111.8 -9.6 3.7 -0.7 47 47 A Y H > S+ 0 0 39 -27,-2.8 4,-2.4 -2,-0.5 -26,-0.2 0.823 84.1 64.9 -74.2 -33.5 -7.1 1.6 -2.8 48 48 A D H 4 S+ 0 0 58 -28,-0.9 -1,-0.2 1,-0.2 -27,-0.1 0.916 111.8 35.5 -58.5 -41.4 -9.9 -0.3 -4.4 49 49 A R H 4 S+ 0 0 153 1,-0.1 -2,-0.2 3,-0.0 -1,-0.2 0.973 128.8 32.3 -71.0 -57.9 -11.1 3.0 -6.0 50 50 A D H < S- 0 0 51 -4,-2.1 -3,-0.2 2,-0.1 -2,-0.2 0.838 78.2-154.8 -72.7 -44.0 -7.8 4.7 -6.7 51 51 A K < + 0 0 118 -4,-2.4 2,-0.5 1,-0.2 -4,-0.1 0.762 48.6 128.9 66.2 32.1 -5.3 1.8 -7.5 52 52 A K + 0 0 53 -42,-0.1 -9,-1.6 -5,-0.1 2,-0.3 -0.972 31.3 166.3-120.0 131.2 -2.2 3.8 -6.4 53 53 A Y E -D 42 0B 43 -2,-0.5 -43,-2.0 -11,-0.2 -44,-1.9 -0.817 24.7-146.6-135.5 173.6 0.2 2.2 -3.9 54 54 A G E -D 41 0B 0 -13,-2.6 -13,-2.3 -2,-0.3 2,-0.2 -0.824 31.3 -98.3-134.1 170.4 3.6 2.4 -2.4 55 55 A F E -D 40 0B 30 -50,-1.9 -51,-0.4 -51,-0.4 -15,-0.3 -0.607 31.6-158.0 -97.1 158.5 6.1 -0.2 -1.1 56 56 A b E -D 39 0B 3 -17,-3.1 -17,-0.5 -2,-0.2 2,-0.5 -0.764 36.0 -78.5-124.4 166.9 6.5 -1.1 2.6 57 57 A P - 0 0 38 0, 0.0 3,-0.2 0, 0.0 -28,-0.1 -0.603 45.7-133.1 -73.8 124.2 9.4 -2.7 4.5 58 58 A E S S+ 0 0 70 -2,-0.5 -20,-0.1 1,-0.2 -27,-0.0 -0.304 90.1 45.0 -68.6 160.2 9.6 -6.5 3.9 59 59 A T 0 0 150 1,-0.0 -1,-0.2 -2,-0.0 0, 0.0 0.900 360.0 360.0 66.1 41.8 10.0 -8.6 7.0 60 60 A A 0 0 87 -3,-0.2 -31,-0.3 -31,-0.0 -2,-0.1 -0.124 360.0 360.0-167.1 360.0 7.4 -6.5 8.7