==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 14-SEP-05 2D2P . COMPND 2 MOLECULE: PITUITARY ADENYLATE CYCLASE ACTIVATING . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR Y.TATEISHI,J.G.JEE,H.INOOKA,H.TOCHIO,H.HIROAKI,M.SHIRAKAWA . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4386.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 92.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 28 73.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A H 0 0 222 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 149.2 13.2 -9.2 -18.4 2 2 A S > - 0 0 68 0, 0.0 3,-0.7 0, 0.0 0, 0.0 -0.972 360.0 -96.9-157.0 167.4 15.4 -6.2 -17.4 3 3 A D T 3 S+ 0 0 184 1,-0.3 3,-0.0 -2,-0.3 0, 0.0 0.634 118.0 3.6 -60.8 -21.1 18.9 -5.3 -16.1 4 4 A G T > - 0 0 27 0, 0.0 3,-3.0 0, 0.0 -1,-0.3 -0.367 68.2-175.4-171.6 65.1 17.9 -5.2 -12.4 5 5 A I T X> S+ 0 0 77 -3,-0.7 3,-2.3 1,-0.3 4,-2.2 0.707 78.5 79.3 -43.5 -28.9 14.1 -6.1 -12.2 6 6 A F H 3> S+ 0 0 172 1,-0.3 4,-1.2 2,-0.2 -1,-0.3 0.709 77.8 72.4 -52.1 -24.5 14.4 -5.3 -8.4 7 7 A T H <4 S+ 0 0 123 -3,-3.0 -1,-0.3 1,-0.2 4,-0.2 0.703 111.5 27.3 -65.7 -19.7 14.1 -1.6 -9.6 8 8 A D H <> S+ 0 0 72 -3,-2.3 4,-2.3 -4,-0.2 -2,-0.2 0.690 108.6 67.4-118.1 -29.8 10.4 -2.3 -10.4 9 9 A S H X S+ 0 0 49 -4,-2.2 4,-1.5 1,-0.2 -3,-0.2 0.811 99.0 59.0 -59.8 -26.6 9.6 -5.1 -7.9 10 10 A Y H X S+ 0 0 140 -4,-1.2 4,-2.1 -5,-0.2 -1,-0.2 0.914 105.3 47.1 -64.6 -43.0 10.2 -2.3 -5.3 11 11 A S H > S+ 0 0 58 -3,-0.2 4,-1.7 2,-0.2 -2,-0.2 0.907 106.1 59.2 -64.0 -40.9 7.3 -0.3 -7.1 12 12 A R H X S+ 0 0 147 -4,-2.3 4,-0.8 1,-0.2 -2,-0.2 0.858 110.2 42.3 -58.3 -37.7 5.1 -3.5 -7.0 13 13 A Y H X S+ 0 0 143 -4,-1.5 4,-2.1 2,-0.2 3,-0.3 0.867 107.3 60.1 -76.8 -36.5 5.4 -3.6 -3.2 14 14 A R H X S+ 0 0 130 -4,-2.1 4,-1.8 1,-0.2 -2,-0.2 0.810 101.3 56.5 -60.9 -25.7 4.9 0.3 -2.9 15 15 A K H X S+ 0 0 135 -4,-1.7 4,-1.1 2,-0.2 -1,-0.2 0.888 106.5 49.0 -67.9 -39.2 1.5 -0.3 -4.6 16 16 A Q H X S+ 0 0 94 -4,-0.8 4,-2.3 -3,-0.3 -2,-0.2 0.893 108.8 53.5 -65.3 -39.7 0.6 -2.8 -1.7 17 17 A M H X S+ 0 0 85 -4,-2.1 4,-2.2 1,-0.2 -2,-0.2 0.921 104.2 54.4 -61.6 -45.0 1.8 -0.1 0.9 18 18 A A H X S+ 0 0 60 -4,-1.8 4,-0.7 1,-0.2 -1,-0.2 0.818 110.4 48.0 -58.4 -32.8 -0.6 2.5 -0.7 19 19 A V H >X S+ 0 0 80 -4,-1.1 4,-2.1 -3,-0.2 3,-0.8 0.925 107.8 53.1 -72.6 -45.3 -3.4 -0.1 -0.2 20 20 A K H 3X S+ 0 0 135 -4,-2.3 4,-2.6 1,-0.3 -2,-0.2 0.887 105.8 56.3 -57.9 -39.2 -2.5 -0.9 3.5 21 21 A K H 3X S+ 0 0 144 -4,-2.2 4,-1.3 2,-0.2 -1,-0.3 0.800 106.0 49.7 -62.5 -33.3 -2.6 2.9 4.2 22 22 A Y H X S+ 0 0 59 -4,-1.6 4,-1.1 -3,-0.4 3,-0.8 0.904 111.1 52.4 -75.6 -38.9 -11.0 3.3 7.5 27 27 A L H 3X S+ 0 0 112 -4,-2.0 4,-2.1 1,-0.2 3,-0.2 0.863 102.6 62.0 -58.9 -35.0 -9.7 1.9 10.8 28 28 A G H 3X S+ 0 0 24 -4,-1.9 4,-0.7 1,-0.2 -1,-0.2 0.776 98.9 53.6 -63.1 -29.1 -8.9 5.6 11.7 29 29 A K H X S+ 0 0 127 -4,-0.7 4,-2.7 2,-0.2 3,-0.7 0.940 110.6 45.3 -62.1 -49.0 -12.4 7.8 17.2 33 33 A Q H 3X S+ 0 0 98 -4,-0.7 4,-1.7 1,-0.2 -2,-0.2 0.919 109.2 53.9 -61.3 -51.0 -15.5 5.8 18.1 34 34 A R H 3< S+ 0 0 190 -4,-2.6 -1,-0.2 1,-0.2 -2,-0.2 0.594 115.0 43.5 -63.2 -12.8 -13.6 3.2 20.1 35 35 A V H X< S+ 0 0 84 -3,-0.7 3,-1.9 -4,-0.6 -2,-0.2 0.840 110.7 49.2-101.1 -47.4 -12.1 6.0 22.2 36 36 A K H 3< S+ 0 0 184 -4,-2.7 -2,-0.2 1,-0.3 -3,-0.2 0.760 109.6 56.4 -65.6 -22.0 -15.1 8.3 22.8 37 37 A N T 3< 0 0 133 -4,-1.7 -1,-0.3 -5,-0.2 -2,-0.1 0.504 360.0 360.0 -77.0 -9.1 -17.0 5.2 24.0 38 38 A K < 0 0 217 -3,-1.9 -2,-0.2 -5,-0.1 -3,-0.1 0.617 360.0 360.0-128.7 360.0 -14.2 4.5 26.6