==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL TRANSPORT 10-OCT-05 2D46 . COMPND 2 MOLECULE: CALCIUM CHANNEL, VOLTAGE-DEPENDENT, BETA 4 . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.C.VENDEL,C.D.RITHNER,B.A.LYONS,W.A.HORNE . 61 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4506.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 68.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 4.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 9.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 17 27.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 24.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 112 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 132.5 2.1 -3.8 -14.7 2 2 A S + 0 0 98 1,-0.1 2,-1.5 2,-0.0 0, 0.0 -0.228 360.0 135.6-107.7 42.2 2.6 -1.4 -11.7 3 3 A H > + 0 0 129 1,-0.2 2,-1.2 2,-0.0 3,-0.7 -0.402 15.3 160.3 -87.5 59.1 -0.8 -2.0 -10.2 4 4 A M G > + 0 0 61 -2,-1.5 3,-2.1 1,-0.3 4,-0.4 0.027 26.4 130.2 -71.9 34.8 0.5 -2.3 -6.6 5 5 A Y G >> + 0 0 83 -2,-1.2 3,-1.5 1,-0.3 4,-0.5 0.762 57.0 76.1 -59.2 -24.0 -3.1 -1.5 -5.5 6 6 A D G X4 S+ 0 0 48 -3,-0.7 3,-1.3 1,-0.3 -1,-0.3 0.814 82.4 66.2 -57.1 -30.7 -2.7 -4.6 -3.3 7 7 A N G X4 S+ 0 0 0 -3,-2.1 3,-2.4 1,-0.3 -1,-0.3 0.833 87.8 66.4 -59.8 -33.9 -0.6 -2.4 -1.1 8 8 A L G <4 S+ 0 0 1 -3,-1.5 -1,-0.3 -4,-0.4 -2,-0.2 0.808 83.2 74.0 -59.2 -27.4 -3.7 -0.4 -0.3 9 9 A Y G << S+ 0 0 96 -3,-1.3 -1,-0.3 -4,-0.5 -2,-0.2 0.624 72.4 158.7 -58.5 -12.5 -5.0 -3.5 1.4 10 10 A L < + 0 0 5 -3,-2.4 3,-0.1 1,-0.2 -3,-0.1 0.201 18.9 178.9 -21.2 90.9 -2.4 -2.4 4.0 11 11 A H S S- 0 0 117 1,-0.2 -1,-0.2 41,-0.1 3,-0.1 0.878 75.1 -11.4 -70.6 -41.7 -3.7 -4.2 7.1 12 12 A G S S+ 0 0 35 1,-0.1 -1,-0.2 40,-0.0 15,-0.1 -0.188 104.7 89.6-163.6 66.2 -0.9 -3.0 9.4 13 13 A I - 0 0 44 13,-0.3 39,-0.1 -3,-0.1 -1,-0.1 -0.431 51.4-166.6-159.7 72.1 2.2 -1.2 7.9 14 14 A E + 0 0 134 -3,-0.1 3,-0.1 1,-0.1 4,-0.1 -0.297 18.4 159.3 -66.3 147.8 1.7 2.5 7.6 15 15 A D - 0 0 9 1,-0.2 2,-0.7 2,-0.1 34,-0.1 -0.199 57.2 -90.5-169.8 65.0 4.2 4.5 5.4 16 16 A S S S+ 0 0 57 29,-0.1 -1,-0.2 22,-0.0 27,-0.1 -0.470 104.1 43.6 66.2-106.4 2.9 7.9 4.2 17 17 A E - 0 0 45 -2,-0.7 -2,-0.1 25,-0.1 19,-0.1 -0.351 68.8-148.5 -72.7 150.7 1.2 7.4 0.9 18 18 A A - 0 0 13 17,-0.2 -1,-0.1 1,-0.1 2,-0.1 0.948 42.7 -89.5 -83.9 -77.1 -1.2 4.4 0.3 19 19 A G - 0 0 5 14,-0.2 19,-0.4 3,-0.1 2,-0.3 -0.255 54.1 -59.2-161.0-107.4 -1.0 3.3 -3.2 20 20 A S S S- 0 0 11 15,-0.2 14,-0.3 16,-0.2 -12,-0.1 -0.966 86.3 -23.6-167.0 149.2 -2.9 4.3 -6.3 21 21 A A S S+ 0 0 45 -2,-0.3 2,-0.3 11,-0.1 13,-0.3 0.579 92.4 131.1 5.9 67.9 -6.4 4.5 -7.8 22 22 A D E -A 33 0A 14 11,-1.3 2,-1.5 9,-0.2 11,-1.4 -0.997 64.4-121.6-144.0 144.5 -7.7 1.8 -5.4 23 23 A S E S+A 32 0A 54 -2,-0.3 9,-0.4 9,-0.3 2,-0.3 -0.581 74.0 96.9 -87.2 76.9 -10.6 1.3 -3.1 24 24 A Y - 0 0 66 7,-2.7 6,-0.3 -2,-1.5 2,-0.2 -0.936 60.6-136.1-160.8 135.4 -9.0 0.8 0.3 25 25 A T - 0 0 38 4,-1.2 -2,-0.0 -2,-0.3 7,-0.0 -0.561 28.7-112.6 -93.0 160.3 -8.1 3.1 3.2 26 26 A S S S- 0 0 44 -2,-0.2 -13,-0.3 1,-0.1 -1,-0.1 0.817 89.1 -42.7 -61.0 -35.3 -4.8 3.0 5.0 27 27 A R S S+ 0 0 148 -15,-0.1 -2,-0.1 -13,-0.0 -1,-0.1 0.324 130.1 63.4-161.8 -46.7 -6.4 1.7 8.3 28 28 A P S S- 0 0 115 0, 0.0 2,-0.2 0, 0.0 -2,-0.0 0.650 113.0 -46.5 -71.4 -17.2 -9.7 3.3 9.3 29 29 A S - 0 0 71 2,-0.1 -4,-1.2 0, 0.0 2,-0.3 -0.611 70.0 -56.4-168.3-131.1 -11.7 2.1 6.2 30 30 A D + 0 0 110 -6,-0.3 2,-0.3 -2,-0.2 -6,-0.2 -0.954 43.8 163.7-150.7 124.9 -11.9 1.7 2.4 31 31 A S - 0 0 56 -2,-0.3 -7,-2.7 -9,-0.1 2,-0.7 -0.967 27.4-141.6-151.6 131.0 -11.5 4.4 -0.2 32 32 A D E +A 23 0A 116 -9,-0.4 -9,-0.3 -2,-0.3 2,-0.3 -0.834 44.3 130.7 -97.2 113.1 -10.9 4.3 -4.0 33 33 A V E -A 22 0A 62 -11,-1.4 2,-3.1 -2,-0.7 -11,-1.3 -0.984 67.6 -95.9-162.3 149.3 -8.6 7.1 -5.2 34 34 A S > + 0 0 58 -2,-0.3 3,-0.8 -13,-0.3 -14,-0.1 -0.316 51.0 161.0 -63.9 69.2 -5.5 7.8 -7.4 35 35 A L G > + 0 0 52 -2,-3.1 3,-0.6 1,-0.2 -15,-0.2 0.314 41.4 107.5 -76.6 11.2 -3.2 7.7 -4.4 36 36 A E G 3 + 0 0 124 1,-0.3 -1,-0.2 -19,-0.1 -16,-0.2 0.603 51.3 96.4 -63.3 -9.1 -0.2 7.2 -6.8 37 37 A E G < + 0 0 136 -3,-0.8 -1,-0.3 2,-0.0 3,-0.1 0.207 56.5 156.2 -66.5 16.0 0.5 10.8 -5.9 38 38 A D < - 0 0 29 -3,-0.6 5,-0.1 -19,-0.4 -22,-0.0 -0.207 52.7-101.6 -51.0 131.0 3.0 9.4 -3.3 39 39 A R > - 0 0 141 1,-0.2 4,-1.0 3,-0.1 7,-0.2 -0.304 17.4-137.9 -56.5 130.5 5.6 12.0 -2.4 40 40 A E T 4 S+ 0 0 142 1,-0.2 4,-0.4 2,-0.2 -1,-0.2 0.737 102.7 61.3 -61.1 -20.5 8.9 11.2 -4.1 41 41 A A T >4 S+ 0 0 74 1,-0.2 3,-0.7 2,-0.1 4,-0.2 0.996 117.1 21.5 -68.9 -67.3 10.4 12.2 -0.8 42 42 A I T 3> S+ 0 0 31 1,-0.2 4,-1.9 2,-0.1 3,-0.2 0.268 97.8 98.7 -85.9 10.8 8.9 9.6 1.5 43 43 A R H 3X S+ 0 0 109 -4,-1.0 4,-3.2 2,-0.2 -1,-0.2 0.833 71.9 66.6 -69.0 -28.2 8.1 7.2 -1.3 44 44 A Q H <> S+ 0 0 144 -3,-0.7 4,-1.0 -4,-0.4 -1,-0.2 0.946 106.5 41.3 -55.4 -45.9 11.3 5.3 -0.5 45 45 A E H >> S+ 0 0 112 1,-0.2 4,-0.9 -3,-0.2 3,-0.7 0.913 111.1 57.3 -65.1 -42.3 9.6 4.3 2.7 46 46 A R H >X S+ 0 0 24 -4,-1.9 3,-1.1 1,-0.3 4,-0.8 0.874 98.4 60.7 -56.4 -38.1 6.4 3.8 0.8 47 47 A E H >X S+ 0 0 118 -4,-3.2 3,-1.5 1,-0.3 4,-0.7 0.884 94.9 62.0 -58.1 -36.2 8.3 1.2 -1.4 48 48 A Q H XX S+ 0 0 128 -4,-1.0 3,-1.3 -3,-0.7 4,-0.9 0.857 91.9 66.4 -58.2 -30.3 8.8 -0.7 1.8 49 49 A Q H XX S+ 0 0 2 -3,-1.1 3,-1.5 -4,-0.9 4,-0.7 0.889 87.9 66.2 -57.2 -35.9 5.1 -0.9 1.8 50 50 A A H XX S+ 0 0 32 -3,-1.5 3,-1.7 -4,-0.8 4,-0.5 0.887 93.1 60.4 -51.6 -37.5 5.5 -3.0 -1.3 51 51 A A H XX S+ 0 0 49 -3,-1.3 3,-1.9 -4,-0.7 4,-1.1 0.863 89.3 70.3 -57.7 -34.6 7.2 -5.5 1.1 52 52 A I H < S+ 0 0 93 -4,-1.1 3,-0.9 1,-0.2 -2,-0.3 0.899 109.8 51.6 -61.8 -41.9 3.0 -10.0 4.3 56 56 A R H >< S+ 0 0 33 -4,-3.1 3,-2.6 1,-0.3 -2,-0.2 0.844 97.5 67.3 -64.0 -34.7 -0.3 -10.0 2.4 57 57 A A H 3< S+ 0 0 77 -4,-2.4 -1,-0.3 1,-0.3 -2,-0.2 0.802 86.1 70.2 -56.0 -30.2 0.8 -13.1 0.6 58 58 A K T << S+ 0 0 138 -3,-0.9 -1,-0.3 -4,-0.8 -2,-0.2 0.643 76.3 111.3 -63.3 -13.6 0.5 -14.9 4.0 59 59 A S < - 0 0 71 -3,-2.6 -3,-0.0 -4,-0.2 0, 0.0 -0.426 62.2-149.9 -66.3 133.3 -3.3 -14.4 3.7 60 60 A K 0 0 187 -2,-0.1 -1,-0.1 0, 0.0 -2,-0.1 -0.564 360.0 360.0-103.8 66.2 -5.1 -17.7 3.1 61 61 A P 0 0 178 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.331 360.0 360.0 -63.9 360.0 -8.1 -16.6 1.0