==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 13-DEC-05 2DA1 . COMPND 2 MOLECULE: ALPHA-FETOPROTEIN ENHANCER BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.OHNISHI,T.KIGAWA,T.TOMIZAWA,S.KOSHIBA,M.INOUE,S.YOKOYAMA, . 70 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6563.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 54.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 44.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 133 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-141.7 -10.8 19.6 -24.7 2 2 A S - 0 0 136 2,-0.0 3,-0.0 0, 0.0 0, 0.0 0.791 360.0 -17.3-106.3 -47.3 -7.1 19.9 -25.5 3 3 A S S S- 0 0 121 1,-0.0 0, 0.0 3,-0.0 0, 0.0 0.627 84.2-114.1-125.2 -61.9 -6.0 16.4 -26.2 4 4 A G S S- 0 0 67 0, 0.0 2,-0.3 0, 0.0 -2,-0.0 -0.324 71.2 -15.6 155.1 -64.7 -8.4 13.8 -25.0 5 5 A S - 0 0 108 2,-0.0 2,-0.4 -3,-0.0 0, 0.0 -0.855 61.0-110.7-172.6 134.2 -7.1 11.6 -22.2 6 6 A S + 0 0 113 -2,-0.3 2,-0.4 1,-0.0 -3,-0.0 -0.550 37.7 175.2 -72.6 123.4 -3.7 10.8 -20.6 7 7 A G + 0 0 72 -2,-0.4 -2,-0.0 1,-0.1 -1,-0.0 -0.843 28.5 118.8-136.5 100.1 -2.7 7.2 -21.4 8 8 A K + 0 0 185 -2,-0.4 -1,-0.1 2,-0.1 -2,-0.0 0.672 54.2 78.3-121.8 -54.1 0.7 5.9 -20.3 9 9 A R S S- 0 0 189 1,-0.1 4,-0.0 2,-0.1 0, 0.0 -0.180 86.1-101.0 -60.3 153.6 0.3 3.0 -17.9 10 10 A P - 0 0 93 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 -0.100 44.1 -84.5 -69.8 172.3 -0.6 -0.4 -19.3 11 11 A R S S+ 0 0 256 2,-0.0 -2,-0.1 0, 0.0 0, 0.0 0.906 105.8 90.0 -42.8 -54.0 -4.1 -2.0 -19.3 12 12 A T - 0 0 100 1,-0.0 2,-0.3 0, 0.0 0, 0.0 0.087 59.5-175.0 -41.9 158.7 -3.5 -3.2 -15.7 13 13 A R - 0 0 207 -4,-0.0 2,-0.3 2,-0.0 -2,-0.0 -0.916 22.0-126.7-164.9 135.2 -4.5 -0.9 -12.9 14 14 A I - 0 0 56 -2,-0.3 2,-0.2 4,-0.0 0, 0.0 -0.644 25.1-146.7 -87.1 140.8 -4.3 -0.9 -9.1 15 15 A T >> - 0 0 62 -2,-0.3 4,-3.3 1,-0.1 3,-0.7 -0.533 28.8-105.0-101.2 169.7 -7.4 -0.3 -7.0 16 16 A D H 3> S+ 0 0 132 1,-0.3 4,-1.8 2,-0.2 5,-0.1 0.812 122.2 56.7 -62.1 -30.4 -7.9 1.4 -3.6 17 17 A D H 34 S+ 0 0 114 2,-0.2 4,-0.4 1,-0.2 -1,-0.3 0.775 114.7 38.0 -72.0 -26.8 -8.2 -2.0 -2.0 18 18 A Q H X> S+ 0 0 30 -3,-0.7 4,-1.0 2,-0.1 3,-0.6 0.871 113.7 52.9 -89.9 -45.0 -4.8 -3.0 -3.4 19 19 A L H >X S+ 0 0 58 -4,-3.3 4,-2.6 1,-0.2 3,-1.4 0.926 100.8 61.9 -56.6 -47.9 -3.0 0.3 -3.0 20 20 A R H 3X S+ 0 0 136 -4,-1.8 4,-2.9 1,-0.3 -1,-0.2 0.855 100.9 54.7 -46.8 -39.7 -4.0 0.5 0.7 21 21 A V H <> S+ 0 0 13 -3,-0.6 4,-0.9 -4,-0.4 -1,-0.3 0.834 111.3 44.1 -65.0 -33.0 -2.0 -2.8 1.2 22 22 A L H > - 0 0 59 1,-0.1 4,-3.0 -2,-0.0 3,-1.2 -0.615 31.7 -99.2 -94.3 154.4 11.6 -6.9 1.5 34 34 A E T 34 S+ 0 0 169 1,-0.3 4,-0.5 -2,-0.2 -1,-0.1 0.744 130.5 49.2 -40.2 -25.4 11.9 -9.9 -0.9 35 35 A E T 3> S+ 0 0 153 2,-0.2 4,-2.0 3,-0.1 -1,-0.3 0.859 113.7 42.1 -84.3 -39.8 9.8 -11.6 1.7 36 36 A Q H <> S+ 0 0 57 -3,-1.2 4,-2.9 2,-0.2 5,-0.4 0.905 107.2 60.4 -73.4 -43.4 7.1 -8.9 2.0 37 37 A I H X S+ 0 0 10 -4,-3.0 4,-1.6 1,-0.2 -1,-0.2 0.811 112.1 42.0 -53.9 -31.1 7.0 -8.3 -1.8 38 38 A K H > S+ 0 0 128 -4,-0.5 4,-1.2 -5,-0.4 5,-0.2 0.934 111.9 50.5 -81.6 -52.2 5.9 -11.9 -2.1 39 39 A E H X S+ 0 0 69 -4,-2.0 4,-1.5 1,-0.2 -2,-0.2 0.848 118.8 41.4 -54.7 -35.7 3.5 -12.1 0.8 40 40 A M H X>S+ 0 0 0 -4,-2.9 4,-2.9 2,-0.2 5,-0.8 0.927 101.2 66.8 -78.1 -48.7 1.8 -9.0 -0.5 41 41 A A H X5S+ 0 0 14 -4,-1.6 4,-0.6 -5,-0.4 -1,-0.2 0.770 113.4 36.7 -43.1 -28.6 1.9 -9.9 -4.2 42 42 A D H <5S+ 0 0 139 -4,-1.2 -1,-0.3 2,-0.2 -2,-0.2 0.828 110.2 59.0 -93.4 -40.3 -0.6 -12.6 -3.1 43 43 A K H <5S+ 0 0 132 -4,-1.5 -2,-0.2 -5,-0.2 -3,-0.2 0.879 127.1 19.1 -56.6 -39.8 -2.5 -10.6 -0.5 44 44 A S H <5S- 0 0 25 -4,-2.9 -1,-0.2 2,-0.2 -3,-0.2 0.806 105.1-120.4 -98.9 -41.0 -3.5 -8.1 -3.2 45 45 A G << + 0 0 57 -5,-0.8 -3,-0.2 -4,-0.6 -4,-0.2 0.386 66.4 130.8 113.1 -0.3 -2.8 -10.1 -6.4 46 46 A L - 0 0 18 -6,-0.3 -1,-0.4 1,-0.1 -2,-0.2 -0.539 57.4-109.6 -86.3 151.9 -0.2 -7.9 -7.9 47 47 A P > - 0 0 46 0, 0.0 4,-1.5 0, 0.0 5,-0.2 -0.048 27.4-107.3 -69.8 176.6 3.1 -9.1 -9.3 48 48 A Q H > S+ 0 0 80 2,-0.2 4,-1.3 1,-0.2 5,-0.2 0.684 118.9 53.6 -80.1 -19.3 6.6 -8.5 -7.8 49 49 A K H > S+ 0 0 157 2,-0.2 4,-1.9 3,-0.2 5,-0.2 0.854 108.9 46.6 -82.1 -38.4 7.4 -6.1 -10.6 50 50 A V H > S+ 0 0 39 2,-0.2 4,-2.6 3,-0.2 -2,-0.2 0.931 115.7 44.7 -69.3 -47.1 4.3 -3.9 -10.1 51 51 A I H X S+ 0 0 0 -4,-1.5 4,-2.4 2,-0.2 5,-0.2 0.970 114.3 47.7 -61.5 -56.4 4.6 -3.7 -6.3 52 52 A K H X S+ 0 0 127 -4,-1.3 4,-1.5 1,-0.2 -2,-0.2 0.938 114.6 46.6 -50.0 -54.7 8.4 -3.0 -6.3 53 53 A H H >X S+ 0 0 113 -4,-1.9 4,-2.8 1,-0.2 3,-0.8 0.942 108.7 55.1 -54.2 -52.6 8.0 -0.3 -9.0 54 54 A W H 3X S+ 0 0 27 -4,-2.6 4,-2.3 1,-0.3 5,-0.3 0.910 105.5 52.5 -47.3 -50.3 5.1 1.3 -7.3 55 55 A F H 3X S+ 0 0 2 -4,-2.4 4,-2.8 2,-0.2 -1,-0.3 0.851 115.3 43.2 -56.1 -35.9 7.1 1.7 -4.1 56 56 A R H 4 S+ 0 0 120 -4,-0.5 3,-1.8 -5,-0.5 -1,-0.3 0.952 105.0 49.9 -60.6 -52.1 8.5 11.3 -5.2 62 62 A E H 3< S+ 0 0 142 -4,-1.6 -1,-0.2 -3,-0.4 -2,-0.2 0.811 103.5 62.5 -57.2 -30.5 8.5 11.8 -1.4 63 63 A R H 3< S+ 0 0 173 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.2 0.748 80.3 115.9 -67.2 -23.6 12.3 12.1 -1.6 64 64 A Q << - 0 0 140 -3,-1.8 2,-0.4 -4,-0.7 -3,-0.0 -0.015 56.1-150.8 -45.0 150.5 11.8 15.2 -3.8 65 65 A S + 0 0 122 2,-0.0 -1,-0.1 0, 0.0 -2,-0.1 -0.853 18.5 175.8-134.7 98.7 13.1 18.4 -2.2 66 66 A G - 0 0 54 -2,-0.4 0, 0.0 1,-0.1 0, 0.0 -0.796 29.8-112.1-106.3 146.8 11.4 21.6 -3.1 67 67 A P - 0 0 135 0, 0.0 2,-0.4 0, 0.0 -1,-0.1 -0.243 27.7-123.8 -69.8 159.8 12.0 25.1 -1.8 68 68 A S + 0 0 126 2,-0.0 2,-0.3 0, 0.0 0, 0.0 -0.902 30.5 169.7-111.3 135.2 9.5 27.0 0.4 69 69 A S 0 0 119 -2,-0.4 0, 0.0 1,-0.0 0, 0.0 -0.893 360.0 360.0-147.9 112.7 8.2 30.5 -0.5 70 70 A G 0 0 130 -2,-0.3 -2,-0.0 0, 0.0 -1,-0.0 0.116 360.0 360.0 129.2 360.0 5.3 32.2 1.3