==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 13-DEC-05 2DA2 . COMPND 2 MOLECULE: ALPHA-FETOPROTEIN ENHANCER BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.OHNISHI,T.KIGAWA,N.TOCHIO,S.KOSHIBA,M.INOUE,S.YOKOYAMA, . 70 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5983.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 39 55.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 32 45.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 133 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-142.0 16.3 0.4 -32.8 2 2 A S - 0 0 115 1,-0.2 4,-0.0 2,-0.1 3,-0.0 -0.701 360.0-150.7 -86.1 127.5 12.9 1.2 -31.2 3 3 A S - 0 0 139 -2,-0.5 -1,-0.2 2,-0.0 2,-0.1 0.957 62.7 -68.1 -59.5 -53.6 11.5 4.6 -32.0 4 4 A G S S+ 0 0 30 1,-0.1 3,-0.1 2,-0.0 -2,-0.1 -0.223 70.7 142.0-161.2-103.9 9.6 4.9 -28.7 5 5 A S + 0 0 118 1,-0.1 2,-0.2 -2,-0.1 -1,-0.1 0.855 48.1 159.3 41.9 42.7 6.6 3.0 -27.3 6 6 A S + 0 0 114 -3,-0.1 2,-0.4 -4,-0.0 3,-0.2 -0.511 20.5 63.2 -92.4 162.5 8.4 3.2 -23.9 7 7 A G S S- 0 0 67 -2,-0.2 -1,-0.0 1,-0.1 0, 0.0 -0.990 102.0 -47.6 133.6-130.5 6.8 2.8 -20.5 8 8 A R - 0 0 185 -2,-0.4 -1,-0.1 0, 0.0 -2,-0.0 0.644 48.9-172.5-116.1 -30.7 5.0 -0.1 -19.0 9 9 A S + 0 0 114 -3,-0.2 -2,-0.1 1,-0.1 -3,-0.0 0.822 50.1 119.3 34.4 43.5 2.6 -1.2 -21.8 10 10 A S - 0 0 41 2,-0.1 -1,-0.1 40,-0.0 3,-0.1 0.759 58.3-154.4-102.1 -35.9 1.1 -3.6 -19.3 11 11 A R + 0 0 244 1,-0.2 2,-0.5 0, 0.0 -2,-0.0 0.898 40.3 148.6 59.9 42.1 -2.5 -2.3 -19.1 12 12 A T - 0 0 62 38,-0.0 2,-0.5 2,-0.0 -1,-0.2 -0.939 23.4-179.4-114.0 121.0 -2.9 -3.6 -15.6 13 13 A R - 0 0 222 -2,-0.5 2,-0.2 -3,-0.1 0, 0.0 -0.972 11.0-155.0-123.5 122.1 -5.2 -1.9 -13.1 14 14 A F - 0 0 24 -2,-0.5 2,-0.3 4,-0.0 -2,-0.0 -0.545 13.6-127.7 -91.9 158.8 -5.7 -3.1 -9.6 15 15 A T >> - 0 0 80 -2,-0.2 4,-2.8 1,-0.1 3,-1.6 -0.733 32.0 -98.9-106.2 155.5 -8.7 -2.4 -7.4 16 16 A D H 3> S+ 0 0 139 1,-0.3 4,-2.3 -2,-0.3 5,-0.2 0.831 125.6 58.2 -35.3 -44.5 -8.9 -1.0 -3.9 17 17 A Y H 3> S+ 0 0 124 2,-0.2 4,-1.1 1,-0.2 -1,-0.3 0.920 116.2 32.5 -55.3 -47.4 -9.2 -4.6 -2.7 18 18 A Q H <> S+ 0 0 25 -3,-1.6 4,-3.0 2,-0.2 3,-0.4 0.940 116.7 54.2 -75.6 -50.5 -5.9 -5.5 -4.3 19 19 A L H X S+ 0 0 52 -4,-2.8 4,-2.8 1,-0.2 5,-0.3 0.802 104.5 59.9 -54.0 -29.8 -4.2 -2.2 -3.8 20 20 A R H X S+ 0 0 162 -4,-2.3 4,-2.2 -5,-0.5 -1,-0.2 0.945 111.5 36.0 -64.7 -50.0 -5.0 -2.6 -0.2 21 21 A V H X S+ 0 0 27 -4,-1.1 4,-2.4 -3,-0.4 -2,-0.2 0.898 120.6 48.5 -70.6 -41.9 -3.1 -5.8 0.2 22 22 A L H X S+ 0 0 0 -4,-3.0 4,-1.2 2,-0.2 -2,-0.2 0.936 118.1 39.5 -63.9 -48.2 -0.3 -4.8 -2.1 23 23 A Q H X S+ 0 0 73 -4,-2.8 4,-2.5 -5,-0.3 -2,-0.2 0.867 115.4 53.2 -69.7 -37.4 0.1 -1.4 -0.5 24 24 A D H X S+ 0 0 91 -4,-2.2 4,-1.0 -5,-0.3 -2,-0.2 0.885 109.2 48.6 -65.1 -39.7 -0.3 -2.8 3.0 25 25 A F H X S+ 0 0 42 -4,-2.4 4,-2.8 1,-0.2 -1,-0.2 0.792 112.0 50.9 -70.8 -28.4 2.4 -5.4 2.3 26 26 A F H < S+ 0 0 31 -4,-1.2 -2,-0.2 2,-0.2 -1,-0.2 0.929 102.8 56.5 -74.5 -47.7 4.7 -2.7 1.1 27 27 A D H < S+ 0 0 138 -4,-2.5 -1,-0.2 1,-0.2 -2,-0.2 0.804 121.5 31.8 -54.2 -30.1 4.3 -0.4 4.0 28 28 A A H < S+ 0 0 89 -4,-1.0 2,-0.3 1,-0.3 -2,-0.2 0.826 138.4 9.2 -95.2 -41.2 5.5 -3.3 6.2 29 29 A N < + 0 0 60 -4,-2.8 -1,-0.3 -5,-0.2 -2,-0.1 -0.961 49.4 165.0-147.0 125.0 7.8 -5.0 3.7 30 30 A A S S+ 0 0 12 -2,-0.3 -4,-0.1 -3,-0.1 29,-0.1 0.216 79.4 57.7-120.3 10.5 9.1 -3.8 0.3 31 31 A Y S S+ 0 0 172 -5,-0.1 -1,-0.1 2,-0.0 -5,-0.0 -0.200 72.7 153.4-134.5 41.9 11.9 -6.3 -0.0 32 32 A P - 0 0 16 0, 0.0 2,-0.2 0, 0.0 -6,-0.0 -0.218 38.3-119.8 -69.7 162.0 10.1 -9.6 0.2 33 33 A K >> - 0 0 146 1,-0.1 4,-2.8 0, 0.0 3,-0.6 -0.526 33.8 -91.5-100.0 169.3 11.4 -12.8 -1.4 34 34 A D H 3> S+ 0 0 110 1,-0.3 4,-2.3 2,-0.2 5,-0.2 0.903 126.8 55.4 -42.7 -53.5 9.9 -15.1 -4.0 35 35 A D H 3> S+ 0 0 102 1,-0.2 4,-0.9 2,-0.2 -1,-0.3 0.905 112.4 42.6 -47.8 -48.8 8.3 -17.2 -1.3 36 36 A E H X> S+ 0 0 76 -3,-0.6 3,-1.4 1,-0.2 4,-1.0 0.956 108.4 57.2 -64.3 -52.4 6.6 -14.1 0.1 37 37 A F H 3X S+ 0 0 23 -4,-2.8 4,-2.2 1,-0.3 3,-0.5 0.845 100.8 60.5 -47.3 -37.9 5.6 -12.7 -3.2 38 38 A E H 3X S+ 0 0 80 -4,-2.3 4,-3.0 -5,-0.3 5,-0.3 0.883 94.6 62.3 -59.0 -40.1 3.7 -15.9 -3.8 39 39 A Q H > - 0 0 64 0, 0.0 3,-2.5 0, 0.0 4,-1.4 -0.483 26.5-129.5 -69.7 129.1 1.2 -13.1 -11.2 48 48 A T H 3> S+ 0 0 40 1,-0.3 4,-3.1 -2,-0.2 5,-0.2 0.855 108.5 66.1 -44.0 -41.8 4.3 -12.3 -9.1 49 49 A R H 3> S+ 0 0 143 1,-0.3 4,-1.7 2,-0.2 -1,-0.3 0.849 103.0 46.7 -50.6 -37.2 5.7 -10.5 -12.2 50 50 A V H <> S+ 0 0 11 -3,-2.5 4,-1.4 2,-0.2 -1,-0.3 0.874 112.9 47.6 -73.8 -38.9 2.8 -8.0 -11.8 51 51 A I H X S+ 0 0 0 -4,-1.4 4,-2.2 2,-0.2 -2,-0.2 0.818 110.2 54.4 -71.4 -31.4 3.4 -7.6 -8.1 52 52 A V H X S+ 0 0 45 -4,-3.1 4,-3.2 -5,-0.2 5,-0.2 0.957 106.7 48.3 -67.0 -52.4 7.1 -7.1 -8.6 53 53 A V H X S+ 0 0 76 -4,-1.7 4,-1.9 1,-0.2 5,-0.2 0.873 114.4 48.2 -56.1 -39.2 6.9 -4.3 -11.1 54 54 A W H X S+ 0 0 43 -4,-1.4 4,-2.4 2,-0.2 -1,-0.2 0.917 113.6 45.5 -68.4 -44.7 4.4 -2.5 -8.8 55 55 A F H X S+ 0 0 4 -4,-2.2 4,-1.4 2,-0.2 -2,-0.2 0.896 109.8 55.9 -65.8 -41.3 6.6 -3.0 -5.7 56 56 A Q H >X S+ 0 0 102 -4,-3.2 4,-1.2 2,-0.2 3,-0.5 0.952 112.6 40.3 -55.9 -54.1 9.7 -1.9 -7.6 57 57 A N H >X S+ 0 0 84 -4,-1.9 4,-2.3 1,-0.2 3,-0.9 0.955 106.2 63.2 -60.8 -52.7 8.2 1.4 -8.6 58 58 A A H 3X S+ 0 0 5 -4,-2.4 4,-1.4 1,-0.3 -1,-0.2 0.810 103.9 51.8 -41.5 -35.5 6.5 2.0 -5.3 59 59 A R H