==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 14-DEC-05 2DAN . COMPND 2 MOLECULE: ZINC FINGER MYND DOMAIN CONTAINING PROTEIN 10; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.SASAGAWA,K.MIYAMOTO,N.TOCHIO,S.KOSHIBA,M.INOUE,T.KIGAWA, . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5171.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 38.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 5.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 126 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 173.3 -26.6 -22.3 13.4 2 2 A S + 0 0 133 2,-0.0 0, 0.0 0, 0.0 0, 0.0 0.743 360.0 28.0-114.0 -52.0 -25.3 -25.0 11.1 3 3 A S S S- 0 0 121 1,-0.0 0, 0.0 0, 0.0 0, 0.0 0.896 90.9-172.9 -79.8 -43.8 -21.8 -24.2 10.1 4 4 A G - 0 0 55 2,-0.0 2,-0.1 0, 0.0 -2,-0.0 0.032 36.5 -43.6 72.0 174.0 -20.9 -22.2 13.2 5 5 A S - 0 0 97 1,-0.1 3,-0.1 3,-0.0 0, 0.0 -0.464 41.5-145.2 -77.6 148.5 -17.8 -20.1 13.9 6 6 A S - 0 0 133 1,-0.3 2,-0.3 -2,-0.1 -1,-0.1 0.927 69.5 -36.0 -78.0 -48.7 -14.4 -21.5 12.9 7 7 A G - 0 0 43 2,-0.1 2,-0.7 0, 0.0 -1,-0.3 -0.950 47.2-118.9-173.8 153.7 -12.4 -20.0 15.8 8 8 A L + 0 0 176 -2,-0.3 2,-0.3 -3,-0.1 -3,-0.0 -0.871 51.7 137.4-106.6 104.6 -12.0 -16.9 18.0 9 9 A E - 0 0 133 -2,-0.7 2,-1.2 2,-0.0 -2,-0.1 -0.988 64.2 -88.7-145.5 152.7 -8.6 -15.3 17.6 10 10 A A - 0 0 102 -2,-0.3 2,-0.9 1,-0.1 -2,-0.0 -0.440 47.7-172.6 -63.7 94.4 -7.2 -11.8 17.4 11 11 A V + 0 0 120 -2,-1.2 -1,-0.1 0, 0.0 -2,-0.0 -0.811 7.4 177.0 -96.8 104.3 -7.3 -11.3 13.6 12 12 A A - 0 0 77 -2,-0.9 -2,-0.0 1,-0.1 0, 0.0 -0.792 24.0-121.6-108.4 150.3 -5.6 -8.1 12.6 13 13 A P - 0 0 123 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.211 25.5-140.8 -69.7-163.6 -5.0 -6.7 9.1 14 14 A E - 0 0 180 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.972 12.4-166.2-158.0 167.5 -1.6 -5.8 7.5 15 15 A R - 0 0 166 -2,-0.3 11,-0.1 1,-0.0 9,-0.0 -0.982 21.4-115.9-161.2 149.2 0.2 -3.3 5.3 16 16 A P - 0 0 32 0, 0.0 9,-0.4 0, 0.0 2,-0.3 0.208 30.0-121.4 -69.8-163.8 3.4 -2.9 3.3 17 17 A R - 0 0 153 7,-0.2 19,-0.3 9,-0.0 7,-0.2 -0.988 21.1-105.1-150.5 137.6 6.2 -0.4 3.9 18 18 A C - 0 0 6 5,-2.5 19,-0.3 -2,-0.3 7,-0.1 -0.036 18.4-139.4 -54.5 162.3 7.8 2.4 1.8 19 19 A A S S+ 0 0 24 17,-0.7 -1,-0.1 3,-0.1 18,-0.1 0.307 99.2 35.6-107.5 5.4 11.3 1.8 0.4 20 20 A Y S S+ 0 0 122 3,-0.1 17,-0.1 25,-0.0 -2,-0.0 0.638 137.5 13.3-123.6 -40.7 12.5 5.3 1.1 21 21 A C S S- 0 0 58 2,-0.1 3,-0.1 0, 0.0 -2,-0.1 0.457 91.7-128.4-116.2 -9.0 10.9 6.3 4.4 22 22 A S + 0 0 73 1,-0.2 2,-0.3 14,-0.1 -3,-0.1 0.881 57.8 148.6 60.8 39.4 9.7 2.9 5.4 23 23 A A - 0 0 37 1,-0.1 -5,-2.5 -6,-0.0 15,-0.3 -0.745 62.9 -69.5-105.8 153.9 6.2 4.2 6.0 24 24 A E - 0 0 110 -2,-0.3 -7,-0.2 -7,-0.2 2,-0.2 -0.128 60.0-153.6 -41.6 109.9 2.8 2.5 5.6 25 25 A A + 0 0 7 -9,-0.4 13,-0.2 1,-0.1 3,-0.1 -0.613 26.4 175.7 -92.5 152.5 2.6 2.1 1.8 26 26 A S + 0 0 91 11,-0.6 2,-0.3 1,-0.3 -1,-0.1 0.606 66.6 49.3-123.5 -32.7 -0.7 1.8 -0.1 27 27 A K E -A 37 0A 149 10,-0.8 10,-1.8 11,-0.0 -1,-0.3 -0.866 69.8-144.7-114.8 148.1 0.5 1.7 -3.8 28 28 A R E -A 36 0A 126 -2,-0.3 8,-0.2 8,-0.2 2,-0.2 -0.621 43.4 -67.6-106.3 167.0 3.2 -0.5 -5.4 29 29 A C > - 0 0 0 6,-1.4 4,-2.0 -2,-0.2 3,-0.2 -0.336 37.1-152.4 -55.8 116.7 5.6 0.2 -8.2 30 30 A S T 4 S+ 0 0 102 1,-0.2 -1,-0.2 -2,-0.2 -2,-0.0 0.469 93.6 59.3 -71.0 0.4 3.6 0.6 -11.3 31 31 A R T 4 S- 0 0 166 27,-0.0 -1,-0.2 0, 0.0 -2,-0.1 0.861 134.8 -8.7 -94.1 -46.7 6.7 -0.6 -13.2 32 32 A C T 4 S- 0 0 10 -3,-0.2 -2,-0.2 23,-0.1 -3,-0.0 0.532 77.5-140.1-125.0 -21.5 7.2 -4.0 -11.6 33 33 A Q S < S+ 0 0 63 -4,-2.0 -3,-0.1 1,-0.1 -5,-0.0 0.785 75.3 109.2 62.1 27.1 4.6 -3.9 -8.7 34 34 A N + 0 0 107 -5,-0.1 2,-0.3 2,-0.0 -1,-0.1 0.347 67.9 59.5-111.6 1.5 7.2 -5.7 -6.6 35 35 A E S S- 0 0 53 -6,-0.1 -6,-1.4 2,-0.0 2,-0.3 -0.819 70.3-135.2-127.1 166.9 8.0 -2.7 -4.3 36 36 A W E +A 28 0A 74 -19,-0.3 -17,-0.7 -2,-0.3 2,-0.3 -0.929 18.3 175.7-125.3 149.2 6.0 -0.4 -2.0 37 37 A Y E -A 27 0A 3 -10,-1.8 -10,-0.8 -2,-0.3 -11,-0.6 -0.891 27.0-150.7-156.4 120.6 5.9 3.4 -1.6 38 38 A C S S+ 0 0 42 -2,-0.3 2,-0.3 -15,-0.3 -1,-0.1 0.868 90.6 15.1 -56.6 -38.3 3.8 5.6 0.7 39 39 A C S > S- 0 0 77 1,-0.1 4,-1.6 -3,-0.1 5,-0.2 -0.942 77.1-116.2-137.4 158.3 4.1 8.4 -1.9 40 40 A R H > S+ 0 0 165 -2,-0.3 4,-0.8 1,-0.2 5,-0.2 0.927 112.5 60.3 -57.9 -47.8 5.2 8.8 -5.5 41 41 A E H >> S+ 0 0 127 1,-0.2 4,-2.0 2,-0.2 3,-1.8 0.917 103.9 50.1 -45.7 -53.4 8.1 11.0 -4.5 42 42 A C H 3> S+ 0 0 8 1,-0.3 4,-2.6 2,-0.2 5,-0.4 0.925 105.0 56.1 -52.8 -49.7 9.6 8.2 -2.4 43 43 A Q H 3< S+ 0 0 19 -4,-1.6 -1,-0.3 1,-0.3 -2,-0.2 0.657 112.7 45.5 -58.8 -13.9 9.3 5.7 -5.3 44 44 A V H << S+ 0 0 84 -3,-1.8 4,-0.5 -4,-0.8 -1,-0.3 0.749 110.7 50.3 -98.7 -32.3 11.3 8.3 -7.2 45 45 A K H >< S+ 0 0 74 -4,-2.0 3,-0.5 -3,-0.3 4,-0.2 0.929 115.3 41.5 -72.1 -47.1 14.0 9.0 -4.5 46 46 A H T >X S+ 0 0 42 -4,-2.6 4,-2.9 1,-0.2 3,-2.4 0.636 89.3 99.0 -75.0 -13.9 14.8 5.3 -3.8 47 47 A W H 3>>S+ 0 0 85 -5,-0.4 4,-1.9 1,-0.3 5,-0.7 0.885 71.5 63.0 -36.4 -60.2 14.6 4.7 -7.6 48 48 A E H <45S+ 0 0 137 -3,-0.5 -1,-0.3 -4,-0.5 4,-0.2 0.820 117.0 31.4 -36.0 -41.3 18.4 4.9 -7.9 49 49 A K H <45S+ 0 0 95 -3,-2.4 4,-0.5 -4,-0.2 -1,-0.3 0.828 126.5 43.7 -88.2 -37.2 18.4 1.8 -5.6 50 50 A H H >X5S+ 0 0 7 -4,-2.9 3,-2.4 1,-0.2 4,-2.3 0.988 103.4 60.2 -71.5 -63.2 15.1 0.4 -6.9 51 51 A G T 3<5S+ 0 0 28 -4,-1.9 -1,-0.2 1,-0.3 -3,-0.2 0.743 91.2 77.3 -36.6 -28.0 15.5 0.8 -10.6 52 52 A K T 34