==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 30-JAN-06 2DDI . COMPND 2 MOLECULE: WAP, FOLLISTATIN/KAZAL, IMMUNOGLOBULIN, KUNITZ . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR E.LIEPINSH,G.OTTING . 70 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4917.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 14.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 165 0, 0.0 4,-0.1 0, 0.0 68,-0.1 0.000 360.0 360.0 360.0-143.5 -7.3 -12.5 -9.3 2 2 A A - 0 0 25 2,-0.4 67,-0.1 1,-0.1 60,-0.0 -0.108 360.0 -96.9 -57.4 178.1 -4.3 -12.3 -7.0 3 3 A E S S+ 0 0 38 60,-0.1 2,-0.8 65,-0.1 3,-0.2 0.739 117.6 77.8 -74.4 -23.6 -4.8 -14.1 -3.7 4 4 A A + 0 0 47 1,-0.2 -2,-0.4 57,-0.1 -1,-0.1 -0.839 55.5 149.5 -82.6 107.4 -5.9 -10.7 -2.3 5 5 A E + 0 0 80 -2,-0.8 2,-0.3 -4,-0.1 -1,-0.2 0.551 40.7 89.7-118.4 -23.9 -9.4 -10.5 -3.7 6 6 A F S S- 0 0 176 -3,-0.2 2,-1.5 1,-0.1 5,-0.1 -0.634 91.2-113.7 -70.8 135.1 -11.2 -8.5 -1.0 7 7 A T + 0 0 100 -2,-0.3 2,-0.2 4,-0.1 -1,-0.1 -0.625 47.1 172.9 -78.4 93.5 -10.8 -4.9 -2.1 8 8 A D >> - 0 0 71 -2,-1.5 3,-1.6 1,-0.1 4,-0.8 -0.468 54.2 -94.2 -82.9 169.2 -8.6 -3.5 0.7 9 9 A A G >4 S+ 0 0 32 1,-0.3 3,-1.1 2,-0.2 39,-0.3 0.869 125.9 68.0 -51.3 -34.1 -7.3 0.1 0.3 10 10 A a G 34 S+ 0 0 0 1,-0.3 -1,-0.3 37,-0.1 4,-0.1 0.775 96.5 52.0 -61.6 -26.9 -4.1 -1.6 -1.2 11 11 A V G <4 S+ 0 0 38 -3,-1.6 -1,-0.3 18,-0.1 -2,-0.2 0.761 97.0 86.7 -79.2 -25.8 -6.2 -2.7 -4.3 12 12 A L S << S- 0 0 70 -3,-1.1 16,-0.1 -4,-0.8 36,-0.1 -0.588 89.1-109.4 -76.5 130.2 -7.4 1.0 -4.7 13 13 A P - 0 0 96 0, 0.0 35,-0.3 0, 0.0 2,-0.1 -0.156 37.2-112.6 -52.4 153.3 -5.3 3.4 -6.7 14 14 A A - 0 0 34 14,-0.1 2,-0.3 33,-0.1 35,-0.1 -0.450 26.2-151.1 -90.0 165.7 -3.4 6.1 -4.8 15 15 A V - 0 0 64 33,-0.2 26,-0.3 31,-0.2 31,-0.2 -0.958 15.8-147.5-138.7 148.6 -4.1 9.9 -5.0 16 16 A Q - 0 0 91 -2,-0.3 25,-1.8 24,-0.2 27,-0.4 0.939 42.2-137.9 -76.5 -56.8 -2.0 13.0 -4.5 17 17 A G - 0 0 23 23,-0.1 -1,-0.1 1,-0.1 28,-0.1 -0.474 34.6 -64.9 111.6 174.7 -4.7 15.3 -3.0 18 18 A P S S+ 0 0 78 0, 0.0 -1,-0.1 0, 0.0 27,-0.1 0.493 100.7 105.3 -74.2 -6.4 -5.5 19.0 -3.7 19 19 A b - 0 0 36 25,-0.2 23,-0.1 -3,-0.1 -2,-0.1 -0.022 63.0-146.6 -73.3 175.6 -2.1 20.2 -2.2 20 20 A R S S+ 0 0 199 21,-0.2 2,-0.3 -4,-0.0 -1,-0.1 0.226 70.9 92.9-129.4 3.5 1.0 21.4 -4.0 21 21 A G S S- 0 0 44 20,-0.4 2,-0.6 2,-0.0 -2,-0.1 -0.763 72.5-133.4 -94.4 153.8 3.7 20.0 -1.7 22 22 A W - 0 0 144 -2,-0.3 19,-0.2 20,-0.1 17,-0.0 -0.932 22.5-177.5-126.6 106.1 5.1 16.6 -2.8 23 23 A E E -A 40 0A 70 17,-2.5 17,-2.4 -2,-0.6 2,-0.4 -0.908 26.1-129.8-102.1 113.8 5.4 14.0 -0.0 24 24 A P E +A 39 0A 95 0, 0.0 2,-0.2 0, 0.0 15,-0.2 -0.572 40.3 160.1 -69.4 126.5 6.9 10.6 -1.2 25 25 A R E -A 38 0A 61 13,-2.5 13,-2.4 -2,-0.4 2,-0.3 -0.744 35.0-114.5-132.4-179.9 4.8 7.6 -0.1 26 26 A W E -AB 37 50A 64 24,-1.9 24,-2.8 11,-0.3 2,-0.3 -0.936 26.4-175.1-119.6 143.9 4.3 4.0 -1.1 27 27 A A E -A 36 0A 1 9,-2.6 9,-2.6 -2,-0.3 2,-0.2 -0.996 24.3-121.6-138.8 145.2 1.2 2.3 -2.6 28 28 A Y E -A 35 0A 8 -2,-0.3 7,-0.2 7,-0.3 3,-0.1 -0.535 20.3-159.3 -80.8 138.6 0.3 -1.2 -3.6 29 29 A S E >>> -A 34 0A 23 5,-2.4 5,-2.0 -2,-0.2 3,-0.8 -0.949 11.8-170.8-117.3 113.7 -0.6 -1.9 -7.2 30 30 A P G >45S+ 0 0 52 0, 0.0 3,-0.6 0, 0.0 -1,-0.1 0.879 92.9 60.2 -68.6 -33.6 -2.6 -5.2 -7.8 31 31 A L G 345S+ 0 0 173 1,-0.3 -20,-0.0 -20,-0.2 -3,-0.0 0.667 116.6 32.2 -63.2 -20.5 -2.0 -4.6 -11.5 32 32 A L G <45S- 0 0 110 -3,-0.8 -1,-0.3 2,-0.3 3,-0.1 0.386 102.5-137.5-108.2 -5.3 1.7 -4.8 -10.7 33 33 A Q T <<5S+ 0 0 61 -3,-0.6 2,-0.3 -4,-0.5 -2,-0.1 0.801 78.2 72.1 45.6 37.9 1.0 -7.3 -7.9 34 34 A Q E S- 0 0 27 1,-0.1 4,-1.2 -26,-0.1 5,-0.1 -0.946 74.1 -95.4-166.5 171.1 7.9 2.3 3.1 53 53 A R H > S+ 0 0 89 -2,-0.3 4,-2.4 2,-0.2 5,-0.2 0.930 124.3 53.3 -62.3 -47.3 8.2 -0.6 0.6 54 54 A E H > S+ 0 0 147 1,-0.2 4,-3.0 2,-0.2 3,-0.3 0.961 107.5 45.7 -49.8 -66.9 8.3 -2.8 3.8 55 55 A S H > S+ 0 0 20 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.737 114.3 51.5 -54.9 -33.2 5.0 -1.5 5.4 56 56 A c H X S+ 0 0 0 -4,-1.2 4,-2.1 2,-0.2 -1,-0.2 0.921 113.8 39.6 -72.0 -50.7 3.2 -1.7 2.0 57 57 A E H < S+ 0 0 42 -4,-2.4 -2,-0.2 -3,-0.3 -3,-0.2 0.834 113.2 58.1 -67.3 -33.1 4.1 -5.3 1.2 58 58 A D H < S+ 0 0 135 -4,-3.0 -2,-0.2 -5,-0.2 -1,-0.2 0.914 108.6 46.5 -60.3 -38.9 3.6 -6.1 4.9 59 59 A A H < S+ 0 0 47 -4,-1.7 -2,-0.2 1,-0.3 -1,-0.2 0.917 132.6 17.4 -69.5 -43.7 -0.0 -4.8 4.4 60 60 A a S < S- 0 0 12 -4,-2.1 -1,-0.3 -50,-0.1 -2,-0.2 -0.697 89.5-177.2-128.3 80.4 -0.6 -6.7 1.1 61 61 A P - 0 0 81 0, 0.0 2,-0.4 0, 0.0 -3,-0.1 -0.243 25.7-118.5 -79.7 162.4 2.1 -9.5 1.0 62 62 A V + 0 0 77 -59,-0.0 2,-0.3 -60,-0.0 3,-0.0 -0.822 33.3 178.0 -98.2 140.8 2.7 -12.0 -1.7 63 63 A V - 0 0 95 -2,-0.4 -60,-0.1 1,-0.0 2,-0.0 -0.846 48.0 -72.5-127.2 164.7 2.4 -15.7 -0.8 64 64 A D - 0 0 111 -2,-0.3 2,-2.5 1,-0.1 -1,-0.0 -0.419 64.2-100.1 -58.9 139.0 2.7 -18.8 -3.0 65 65 A H + 0 0 79 1,-0.1 2,-2.4 2,-0.1 -1,-0.1 -0.390 48.3 173.8 -72.6 70.8 -0.4 -18.7 -5.2 66 66 A H - 0 0 144 -2,-2.5 2,-0.5 1,-0.1 -1,-0.1 -0.569 36.8-139.6 -73.1 73.4 -2.5 -21.3 -3.3 67 67 A H + 0 0 113 -2,-2.4 -2,-0.1 1,-0.2 -1,-0.1 -0.223 42.2 165.8 -51.3 93.9 -5.2 -20.3 -5.8 68 68 A H S S+ 0 0 127 -2,-0.5 -1,-0.2 2,-0.1 2,-0.1 0.787 72.5 66.7 -73.1 -31.6 -8.5 -20.1 -3.8 69 69 A H 0 0 44 1,-0.2 -66,-0.0 -68,-0.1 -64,-0.0 -0.325 360.0 360.0 -74.2 168.9 -9.6 -18.3 -7.0 70 70 A H 0 0 212 -2,-0.1 -1,-0.2 0, 0.0 -2,-0.1 -0.321 360.0 360.0 -47.9 360.0 -10.0 -19.9 -10.5