==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 30-JAN-06 2DDJ . COMPND 2 MOLECULE: WAP, FOLLISTATIN/KAZAL, IMMUNOGLOBULIN, KUNITZ . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR E.LIEPINSH,G.OTTING . 70 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4766.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32 45.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 14.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 131 0, 0.0 2,-0.8 0, 0.0 64,-0.1 0.000 360.0 360.0 360.0-162.8 -4.3 -12.6 7.3 2 2 A A - 0 0 41 1,-0.1 64,-0.0 56,-0.1 0, 0.0 -0.841 360.0-146.0 -63.0 111.5 -4.2 -8.8 6.9 3 3 A E + 0 0 114 -2,-0.8 2,-0.7 62,-0.1 -1,-0.1 0.570 46.5 144.1 -62.4 -22.7 -8.0 -8.9 7.3 4 4 A A + 0 0 39 1,-0.2 4,-0.2 3,-0.1 63,-0.1 -0.013 2.7 150.0 -33.8 78.5 -8.7 -5.9 4.9 5 5 A E + 0 0 57 -2,-0.7 -1,-0.2 2,-0.1 63,-0.2 0.602 60.8 76.0 -82.2 -23.1 -12.0 -6.9 3.1 6 6 A F S S- 0 0 177 1,-0.2 2,-1.4 61,-0.0 61,-0.0 0.150 120.8 -39.4 -64.9-167.9 -12.7 -3.1 2.8 7 7 A T S S- 0 0 84 3,-0.0 -1,-0.2 4,-0.0 2,-0.2 -0.557 79.0-150.1 -62.2 93.3 -10.9 -1.0 0.2 8 8 A D >> - 0 0 9 -2,-1.4 3,-1.0 -4,-0.2 4,-1.0 -0.492 18.1-132.0 -73.7 139.0 -7.5 -2.8 0.6 9 9 A A G >4 S+ 0 0 14 1,-0.3 3,-0.9 2,-0.2 -1,-0.1 0.892 111.0 59.7 -54.7 -40.2 -4.3 -0.8 0.1 10 10 A a G 34 S+ 0 0 10 49,-0.3 -1,-0.3 1,-0.3 23,-0.1 0.768 111.7 39.3 -59.8 -29.7 -3.2 -3.8 -2.0 11 11 A V G <4 S+ 0 0 92 -3,-1.0 -1,-0.3 18,-0.1 -2,-0.2 0.541 106.9 79.7 -96.7 -9.3 -6.2 -3.2 -4.3 12 12 A L S << S- 0 0 26 -4,-1.0 16,-0.1 -3,-0.9 3,-0.1 -0.739 77.6-118.9-106.3 146.8 -6.1 0.6 -4.3 13 13 A P - 0 0 90 0, 0.0 35,-0.3 0, 0.0 2,-0.1 -0.213 43.5 -84.4 -69.1 169.3 -3.9 3.0 -6.4 14 14 A A - 0 0 37 13,-0.1 2,-0.4 33,-0.1 35,-0.1 -0.489 42.5-150.9 -68.5 149.2 -1.4 5.4 -4.7 15 15 A V - 0 0 41 33,-0.7 26,-0.2 31,-0.2 -3,-0.0 -0.992 16.4-172.3-128.0 131.6 -2.9 8.8 -3.6 16 16 A Q - 0 0 95 -2,-0.4 25,-2.5 24,-0.2 27,-0.2 0.860 39.4-131.8 -83.7 -42.5 -0.9 12.0 -3.5 17 17 A G - 0 0 26 23,-0.1 -1,-0.2 1,-0.1 28,-0.1 -0.409 32.4 -67.7 103.4 174.6 -3.6 14.1 -1.8 18 18 A P S S+ 0 0 77 0, 0.0 -1,-0.1 0, 0.0 27,-0.1 0.540 101.5 90.9 -77.8 -10.3 -4.9 17.6 -2.7 19 19 A b - 0 0 44 25,-0.2 23,-0.1 -3,-0.2 -3,-0.0 0.096 66.5-141.3 -77.9-174.1 -1.7 19.5 -1.8 20 20 A R + 0 0 187 21,-0.2 2,-0.2 2,-0.0 22,-0.1 0.192 69.4 104.1-130.8 4.0 1.4 20.5 -3.9 21 21 A G - 0 0 45 20,-0.4 2,-0.4 2,-0.0 22,-0.1 -0.586 68.4-134.1 -77.6 159.8 4.1 19.9 -1.3 22 22 A W + 0 0 154 -2,-0.2 19,-0.2 19,-0.1 17,-0.1 -0.986 29.2 169.2-134.9 124.5 6.0 16.7 -2.1 23 23 A E E -A 40 0A 74 17,-2.8 17,-3.0 -2,-0.4 2,-0.2 -0.997 35.4-117.0-132.2 124.1 6.9 14.0 0.5 24 24 A P E +A 39 0A 93 0, 0.0 2,-0.2 0, 0.0 15,-0.2 -0.498 44.1 158.3 -69.0 134.4 8.3 10.5 -0.5 25 25 A R E -A 38 0A 51 13,-2.5 13,-2.6 -2,-0.2 2,-0.3 -0.785 36.1-115.7-138.5-178.6 6.1 7.5 0.5 26 26 A W E +AB 37 50A 66 24,-2.2 24,-3.3 11,-0.3 2,-0.3 -0.950 29.4 179.5-123.4 139.2 5.7 3.9 -0.7 27 27 A A E -A 36 0A 0 9,-2.5 9,-2.1 -2,-0.3 2,-0.2 -0.993 28.0-116.1-142.0 147.3 2.5 2.4 -2.3 28 28 A Y E -A 35 0A 14 -2,-0.3 7,-0.3 7,-0.2 3,-0.1 -0.505 21.6-159.2 -78.2 138.3 1.5 -1.0 -3.6 29 29 A S E > > -A 34 0A 19 5,-1.9 5,-1.6 -2,-0.2 3,-1.1 -0.946 11.3-171.8-117.2 113.2 0.9 -1.4 -7.3 30 30 A P G > 5S+ 0 0 67 0, 0.0 3,-0.9 0, 0.0 -1,-0.1 0.873 92.3 60.8 -69.0 -32.7 -1.3 -4.4 -8.3 31 31 A L G 3 5S+ 0 0 178 1,-0.3 -3,-0.0 -3,-0.1 -2,-0.0 0.599 115.3 33.5 -65.8 -14.4 -0.5 -3.5 -12.0 32 32 A L G < 5S- 0 0 118 -3,-1.1 -1,-0.3 2,-0.2 3,-0.1 0.305 105.7-133.4-112.8 -3.8 3.2 -4.1 -11.0 33 33 A Q T < 5S+ 0 0 130 -3,-0.9 2,-0.3 -4,-0.3 -2,-0.1 0.583 80.1 62.2 54.5 19.6 2.3 -6.8 -8.5 34 34 A Q E S- 0 0 33 1,-0.2 4,-1.2 -26,-0.1 5,-0.1 -0.929 77.4-102.8-159.8 168.7 8.9 2.3 4.3 53 53 A R H >> S+ 0 0 99 -2,-0.3 4,-2.8 2,-0.2 3,-0.6 0.984 119.5 54.4 -61.4 -58.7 9.7 -0.6 1.9 54 54 A E H 3> S+ 0 0 144 1,-0.3 4,-2.1 2,-0.2 5,-0.2 0.869 108.6 44.6 -35.7 -66.6 8.9 -3.0 4.8 55 55 A S H 3> S+ 0 0 28 1,-0.2 4,-1.9 2,-0.2 -1,-0.3 0.809 115.4 49.3 -59.6 -33.7 5.4 -1.7 5.6 56 56 A c H