==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 19-MAR-96 1DEF . COMPND 2 MOLECULE: PEPTIDE DEFORMYLASE; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR T.MEINNEL,F.DARDEL . 147 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7887.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 68 46.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 18 12.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 0.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 0.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 12 8.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 107 0, 0.0 32,-0.1 0, 0.0 36,-0.0 0.000 360.0 360.0 360.0 -52.6 1.8 3.2 -4.8 2 2 A V - 0 0 49 31,-0.2 2,-0.9 30,-0.2 32,-0.1 0.414 360.0 -71.7 75.1 147.8 -1.2 1.8 -6.7 3 3 A L - 0 0 12 30,-0.4 2,-1.1 1,-0.1 46,-0.1 -0.597 48.1-165.9 -76.6 111.9 -3.0 3.8 -9.5 4 4 A Q + 0 0 127 -2,-0.9 -1,-0.1 42,-0.1 2,-0.1 -0.617 17.8 167.7 -98.3 73.7 -4.8 6.5 -7.6 5 5 A V - 0 0 44 -2,-1.1 2,-0.3 1,-0.1 46,-0.1 -0.413 30.0-121.3 -78.2 163.4 -7.2 7.7 -10.3 6 6 A L + 0 0 86 -2,-0.1 6,-0.3 2,-0.0 2,-0.2 -0.802 29.3 176.1-119.6 160.6 -9.9 10.0 -9.0 7 7 A H + 0 0 32 -2,-0.3 140,-0.1 3,-0.1 43,-0.0 -0.595 62.7 13.5-133.7-169.4 -13.7 10.2 -8.8 8 8 A I S S+ 0 0 79 1,-0.3 2,-0.6 -2,-0.2 5,-0.1 0.036 129.4 44.6 21.1 -63.9 -16.4 12.4 -7.3 9 9 A P S S+ 0 0 120 0, 0.0 -1,-0.3 0, 0.0 2,-0.2 -0.276 115.1 77.4 -77.5 48.8 -14.1 15.4 -6.4 10 10 A D S S- 0 0 31 -2,-0.6 3,-0.1 -4,-0.1 -3,-0.1 -0.737 88.6-117.3-138.9-174.8 -12.8 14.6 -9.9 11 11 A E S S+ 0 0 90 40,-0.8 40,-0.1 -2,-0.2 41,-0.1 0.410 71.8 115.0-114.4 2.2 -14.0 15.3 -13.5 12 12 A R - 0 0 28 38,-0.6 4,-0.1 -6,-0.3 -1,-0.1 0.807 43.8-178.6 -31.8 -43.5 -14.5 11.8 -15.0 13 13 A L S S- 0 0 109 1,-0.2 -1,-0.1 -3,-0.1 134,-0.1 0.802 81.5 -19.1 29.9 50.8 -18.1 12.8 -15.2 14 14 A R S S- 0 0 190 36,-0.1 2,-0.3 1,-0.1 -1,-0.2 0.890 90.8-153.9 93.3 69.5 -18.7 9.3 -16.5 15 15 A K + 0 0 24 35,-0.1 2,-0.2 34,-0.1 -1,-0.1 -0.538 20.0 174.1 -85.2 137.5 -15.3 8.0 -17.8 16 16 A V - 0 0 49 -2,-0.3 2,-0.4 -4,-0.1 122,-0.1 -0.403 44.5 -92.4-109.8-174.3 -14.7 5.4 -20.4 17 17 A A - 0 0 13 -2,-0.2 39,-0.1 117,-0.2 32,-0.1 -0.829 27.1-143.1-105.6 147.3 -11.2 4.5 -21.7 18 18 A K - 0 0 117 -2,-0.4 38,-0.1 1,-0.1 35,-0.0 -0.871 39.7-108.3-117.1 94.0 -10.0 6.5 -24.7 19 19 A P - 0 0 72 0, 0.0 2,-0.7 0, 0.0 -1,-0.1 0.693 31.7 -89.3 -23.0 171.6 -8.0 3.8 -26.7 20 20 A V + 0 0 1 1,-0.2 56,-0.2 36,-0.2 3,-0.1 -0.788 66.0 126.4-103.0 118.7 -4.3 3.5 -27.2 21 21 A E S S+ 0 0 111 -2,-0.7 2,-0.2 1,-0.4 -1,-0.2 0.583 77.0 5.8-124.1 -54.1 -2.7 5.2 -30.1 22 22 A E S S- 0 0 100 89,-0.1 -1,-0.4 94,-0.0 2,-0.3 -0.652 70.2-114.3-126.9-175.9 0.1 7.3 -28.5 23 23 A V + 0 0 45 -2,-0.2 2,-0.1 91,-0.1 90,-0.1 -0.869 22.3 175.9-124.1 156.8 1.7 8.0 -25.1 24 24 A N - 0 0 61 -2,-0.3 4,-0.2 1,-0.1 -1,-0.0 -0.288 49.4 -82.2-131.1-144.3 2.0 10.9 -22.7 25 25 A A S >> S+ 0 0 67 -2,-0.1 3,-2.1 2,-0.1 4,-0.5 0.886 121.2 54.8 -96.5 -54.7 3.6 11.2 -19.2 26 26 A E H >> S+ 0 0 127 1,-0.3 4,-1.5 2,-0.2 3,-0.7 0.792 91.3 81.2 -46.8 -33.2 0.9 9.8 -16.9 27 27 A I H 3> S+ 0 0 1 1,-0.3 4,-2.4 2,-0.2 -1,-0.3 0.830 82.1 60.6 -43.7 -43.1 1.1 6.7 -19.1 28 28 A Q H <>>S+ 0 0 84 -3,-2.1 4,-2.7 1,-0.3 5,-0.6 0.965 104.5 49.5 -54.3 -51.1 4.1 5.4 -17.3 29 29 A R H S+ 0 0 18 -4,-1.6 4,-2.1 1,-0.2 5,-0.6 0.973 107.8 46.6 -72.9 -57.4 2.2 -3.3 -11.9 36 36 A E H <5S+ 0 0 81 -4,-1.9 4,-0.5 3,-0.2 -2,-0.2 0.748 127.9 30.3 -50.0 -24.4 2.0 -2.0 -8.3 37 37 A T H X5S+ 0 0 1 -4,-1.4 4,-1.6 2,-0.2 -2,-0.2 0.884 112.5 56.2 -98.6 -68.7 -1.7 -2.7 -8.5 38 38 A M H <5S+ 0 0 7 -4,-2.1 -3,-0.2 1,-0.3 -2,-0.2 0.739 124.2 33.5 -32.5 -32.7 -2.2 -5.7 -10.9 39 39 A Y T <5S+ 0 0 78 -4,-2.1 -1,-0.3 -5,-0.4 -2,-0.2 0.845 127.1 36.6 -96.2 -46.9 0.2 -7.4 -8.5 40 40 A A T 4 + 0 0 41 -2,-0.6 4,-0.7 -18,-0.2 3,-0.2 -0.802 18.1 66.0-135.1 176.1 -5.1 -13.3 -20.5 124 124 A G H > S- 0 0 30 -20,-0.3 4,-2.0 -2,-0.3 5,-0.2 -0.141 90.9 -64.7 96.3 167.0 -5.4 -14.3 -16.9 125 125 A L H > S+ 0 0 132 1,-0.2 4,-1.1 2,-0.2 -1,-0.2 0.822 133.5 50.6 -60.1 -31.6 -7.4 -13.2 -13.9 126 126 A L H >>>S+ 0 0 44 2,-0.2 4,-3.3 -3,-0.2 5,-0.7 0.966 102.4 55.9 -77.3 -50.2 -5.6 -9.8 -14.0 127 127 A A H 3X5S+ 0 0 2 -4,-0.7 4,-1.2 1,-0.3 5,-0.2 0.932 117.7 40.1 -41.6 -46.2 -6.2 -9.1 -17.8 128 128 A I H 3X5S+ 0 0 12 -4,-2.0 4,-1.3 -24,-0.2 -1,-0.3 0.786 116.7 51.5 -74.6 -26.0 -9.8 -9.6 -16.9 129 129 A C H X S+ 0 0 8 -4,-1.3 3,-2.0 -6,-0.3 4,-0.8 0.894 99.9 55.2 -35.7 -55.9 -12.5 -5.3 -15.1 133 133 A E H >X S+ 0 0 0 -4,-1.6 3,-1.3 1,-0.3 4,-1.3 0.975 119.8 29.2 -43.8 -68.1 -11.6 -2.0 -13.8 134 134 A M H 3X S+ 0 0 10 -4,-1.8 4,-1.8 1,-0.2 -1,-0.3 0.262 114.0 62.2 -89.3 24.9 -12.3 -0.5 -17.0 135 135 A D H <4 S+ 0 0 15 -3,-2.0 -1,-0.2 -4,-0.4 -2,-0.2 0.267 96.5 61.0-117.8 -1.0 -15.0 -2.9 -18.0 136 136 A H H << S+ 0 0 0 -3,-1.3 -2,-0.2 -4,-0.8 5,-0.2 0.743 123.8 23.7 -90.5 -46.1 -16.9 -1.7 -15.0 137 137 A L H < S+ 0 0 7 -4,-1.3 -2,-0.2 -5,-0.3 -3,-0.2 0.934 141.4 18.3 -95.4 -45.7 -16.6 1.5 -17.0 138 138 A V S < S+ 0 0 39 -4,-1.8 -3,-0.3 -7,-0.3 -4,-0.1 0.594 121.7 58.6 -99.2 -8.7 -16.1 0.8 -20.8 139 139 A G S S+ 0 0 21 -7,-0.2 -1,-0.2 -8,-0.2 -4,-0.2 0.599 88.1 177.2 -89.9 -9.7 -17.4 -2.7 -20.7 140 140 A K + 0 0 105 -6,-0.1 -4,-0.1 1,-0.1 -3,-0.1 0.535 30.0 134.1 -4.3 106.5 -20.5 -1.2 -19.3 141 141 A L + 0 0 84 -6,-0.2 -1,-0.1 -5,-0.2 -41,-0.1 0.616 54.6 85.0-119.5 -65.0 -23.4 -3.7 -18.6 142 142 A F S S- 0 0 27 2,-0.1 -5,-0.0 1,-0.0 -44,-0.0 0.692 87.0-111.6 -8.6-125.6 -24.4 -2.4 -15.0 143 143 A M S S- 0 0 145 -45,-0.0 -1,-0.0 0, 0.0 -45,-0.0 0.113 94.3 -3.6-150.5 -79.4 -26.9 0.5 -15.0 144 144 A D S > S- 0 0 104 2,-0.0 3,-0.8 3,-0.0 -2,-0.1 0.669 76.6-145.9 -96.0 -24.3 -25.4 3.8 -13.7 145 145 A Y T 3 - 0 0 42 1,-0.3 -131,-0.1 -48,-0.1 -56,-0.1 0.890 60.0 -84.5 52.6 40.1 -22.1 2.1 -13.0 146 146 A L T 3 0 0 28 1,-0.1 -1,-0.3 -52,-0.0 -51,-0.1 0.804 360.0 360.0 23.5 70.0 -22.5 4.7 -10.3 147 147 A S < 0 0 60 -3,-0.8 -1,-0.1 -134,-0.1 -140,-0.0 -0.594 360.0 360.0-118.4 360.0 -20.9 7.4 -12.5