==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROPEPTIDE 20-FEB-06 2DEZ . COMPND 2 MOLECULE: PEPTIDE YY; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.NYGAARD . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3857.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 63.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 44.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 263 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 101.2 23.6 8.7 2.3 2 2 A P - 0 0 40 0, 0.0 26,-0.0 0, 0.0 22,-0.0 -0.679 360.0-164.5 -79.4 121.1 25.8 6.4 0.1 3 3 A I S S+ 0 0 113 -2,-0.5 0, 0.0 1,-0.2 0, 0.0 0.922 84.3 8.8 -72.1 -43.1 24.7 6.5 -3.5 4 4 A K S S+ 0 0 152 1,-0.1 -1,-0.2 20,-0.1 3,-0.0 -0.620 73.9 146.1-142.3 79.6 26.6 3.3 -4.5 5 5 A P S S- 0 0 35 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.949 71.8 -81.6 -70.0 -89.2 28.1 1.3 -1.6 6 6 A E - 0 0 117 14,-0.0 15,-0.1 2,-0.0 14,-0.1 0.287 53.7-165.9-144.5 -61.6 27.9 -2.3 -2.6 7 7 A A - 0 0 62 13,-0.1 10,-0.0 10,-0.1 14,-0.0 0.835 5.7-147.4 68.8 115.7 24.3 -3.6 -1.9 8 8 A P - 0 0 58 0, 0.0 9,-0.0 0, 0.0 -2,-0.0 0.174 17.0-115.7 -85.2-150.1 23.5 -7.3 -1.8 9 9 A G - 0 0 55 3,-0.0 -2,-0.0 0, 0.0 0, 0.0 0.375 54.7 -64.9-117.2-106.1 20.2 -9.0 -2.8 10 10 A E S S+ 0 0 190 2,-0.1 3,-0.2 0, 0.0 0, 0.0 0.409 121.0 70.4-130.6 -9.3 18.0 -10.9 -0.5 11 11 A D + 0 0 116 1,-0.2 2,-0.7 2,-0.0 6,-0.1 0.892 64.0 154.2 -75.1 -40.1 20.2 -13.8 0.4 12 12 A A > + 0 0 23 4,-0.1 4,-0.8 1,-0.1 5,-0.3 -0.316 17.5 177.1 54.5 -97.8 22.5 -11.6 2.5 13 13 A S H > - 0 0 65 -2,-0.7 4,-2.8 3,-0.2 5,-0.5 0.372 52.2 -78.9 69.2 149.7 24.1 -13.9 5.0 14 14 A P H 4 S+ 0 0 114 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.493 129.7 48.7 -62.9 -3.1 26.8 -12.8 7.5 15 15 A E H > S+ 0 0 123 -3,-0.2 4,-1.7 3,-0.1 -2,-0.2 0.834 116.8 35.2-100.1 -47.9 29.5 -12.9 4.9 16 16 A E H X S+ 0 0 69 -4,-0.8 4,-2.9 2,-0.2 5,-0.3 0.897 121.5 47.9 -74.1 -40.5 27.9 -11.0 2.0 17 17 A L H X S+ 0 0 70 -4,-2.8 4,-1.6 -5,-0.3 -1,-0.2 0.879 114.6 47.2 -65.6 -36.9 26.1 -8.6 4.3 18 18 A N H > S+ 0 0 88 -5,-0.5 4,-2.3 2,-0.2 -2,-0.2 0.814 111.6 51.9 -73.6 -30.7 29.4 -8.1 6.2 19 19 A R H X S+ 0 0 138 -4,-1.7 4,-1.8 2,-0.2 -2,-0.2 0.975 114.0 40.5 -67.5 -54.4 31.2 -7.7 2.8 20 20 A Y H X S+ 0 0 66 -4,-2.9 4,-1.5 1,-0.2 -2,-0.2 0.827 112.6 62.3 -60.6 -31.5 28.9 -5.0 1.6 21 21 A Y H >X S+ 0 0 147 -4,-1.6 4,-1.8 -5,-0.3 3,-0.6 0.973 108.9 35.7 -55.6 -61.4 29.0 -3.7 5.2 22 22 A A H 3X S+ 0 0 54 -4,-2.3 4,-2.1 1,-0.3 -1,-0.2 0.723 113.3 60.4 -72.8 -20.5 32.7 -2.9 5.2 23 23 A S H 3X S+ 0 0 34 -4,-1.8 4,-2.9 2,-0.2 -1,-0.3 0.790 105.1 49.5 -71.5 -28.2 32.4 -1.9 1.6 24 24 A L H < S+ 0 0 92 -4,-1.9 3,-0.9 2,-0.2 -2,-0.2 0.957 115.0 42.2 -67.0 -50.4 35.3 6.7 4.4 30 30 A L H >< S+ 0 0 100 -4,-2.6 3,-1.2 1,-0.3 -2,-0.2 0.806 107.9 61.7 -67.7 -29.6 36.6 7.5 0.9 31 31 A V H 3< S+ 0 0 86 -4,-2.3 3,-0.3 1,-0.3 -1,-0.3 0.746 109.3 42.3 -68.7 -21.9 33.6 9.6 0.1 32 32 A T T << S+ 0 0 91 -3,-0.9 -1,-0.3 -4,-0.8 -2,-0.2 0.292 119.4 47.6-102.6 7.5 34.7 11.8 3.0 33 33 A R < + 0 0 165 -3,-1.2 2,-2.5 -5,-0.1 -1,-0.2 -0.438 59.9 168.8-146.8 64.8 38.3 11.6 1.9 34 34 A Q + 0 0 185 -3,-0.3 2,-1.1 1,-0.1 -3,-0.1 -0.248 25.4 148.3 -75.2 52.4 38.5 12.3 -1.9 35 35 A R 0 0 224 -2,-2.5 -1,-0.1 1,-0.2 -3,-0.0 -0.755 360.0 360.0 -96.2 92.0 42.3 12.5 -1.6 36 36 A Y 0 0 282 -2,-1.1 -1,-0.2 0, 0.0 -2,-0.1 0.943 360.0 360.0 53.4 360.0 43.7 11.2 -4.9