==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 01-DEC-97 1DFD . COMPND 2 MOLECULE: FERREDOXIN I; . SOURCE 2 ORGANISM_SCIENTIFIC: DESULFOVIBRIO AFRICANUS; . AUTHOR S.L.DAVY,M.J.OSBORNE,G.R.MOORE . 63 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4392.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 54.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 15.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 19.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 152 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 118.4 -11.6 10.3 8.2 2 2 A R + 0 0 158 61,-0.1 61,-0.2 59,-0.0 2,-0.1 -0.931 360.0 172.4-137.0 114.3 -8.9 7.5 8.0 3 3 A K E -A 62 0A 104 59,-1.4 59,-1.7 -2,-0.4 2,-0.3 -0.101 4.9-179.3-101.2-156.5 -6.0 7.5 5.5 4 4 A F E -A 61 0A 14 57,-0.4 57,-0.3 58,-0.2 2,-0.3 -0.968 8.7-176.5 179.8-167.4 -3.0 5.3 5.2 5 5 A Y E -A 60 0A 91 55,-2.3 55,-1.8 -2,-0.3 2,-0.3 -0.970 21.2-113.5 173.5-166.8 0.2 4.6 3.2 6 6 A V E -A 59 0A 10 -2,-0.3 2,-0.8 53,-0.2 53,-0.3 -0.981 16.0-119.8-152.1 166.8 3.0 2.1 3.1 7 7 A D >> + 0 0 76 51,-3.4 3,-3.5 -2,-0.3 4,-0.6 -0.555 29.9 174.7-106.8 68.6 6.7 1.6 3.5 8 8 A Q G >4 S+ 0 0 38 -2,-0.8 3,-0.8 1,-0.3 -1,-0.2 0.715 73.7 77.6 -47.7 -15.6 7.6 0.6 0.0 9 9 A D G 34 S+ 0 0 124 1,-0.3 -1,-0.3 49,-0.1 -2,-0.1 0.881 99.5 39.2 -65.2 -33.1 11.2 0.6 1.5 10 10 A E G <4 S+ 0 0 81 -3,-3.5 -1,-0.3 48,-0.2 2,-0.2 0.419 91.6 121.9 -93.5 0.7 10.4 -2.7 3.1 11 11 A C << - 0 0 20 -3,-0.8 47,-0.1 -4,-0.6 -3,-0.0 -0.458 47.2-162.0 -66.8 129.3 8.5 -3.8 -0.1 12 12 A I - 0 0 90 -2,-0.2 22,-0.3 2,-0.1 2,-0.2 0.247 44.3 -66.5 -88.8-143.2 10.0 -7.0 -1.5 13 13 A A S S+ 0 0 102 20,-0.1 2,-0.3 2,-0.0 -2,-0.0 -0.328 97.7 100.3-107.6 52.9 9.5 -8.4 -5.0 14 14 A C - 0 0 39 -2,-0.2 20,-0.2 1,-0.1 4,-0.2 -0.951 51.8-161.4-134.5 155.2 5.8 -9.2 -4.8 15 15 A E > + 0 0 109 -2,-0.3 4,-2.4 1,-0.1 5,-0.3 0.145 50.8 125.0-120.5 18.9 2.6 -7.4 -6.0 16 16 A S H > S+ 0 0 45 1,-0.2 4,-1.6 2,-0.2 3,-0.2 0.931 83.4 42.4 -44.2 -51.1 0.0 -9.3 -3.8 17 17 A C H >4 S+ 0 0 10 1,-0.2 3,-0.9 2,-0.2 4,-0.5 0.982 107.4 58.7 -62.0 -54.9 -1.1 -5.8 -2.5 18 18 A V H >4 S+ 0 0 27 1,-0.3 3,-0.9 2,-0.2 -1,-0.2 0.855 106.6 51.7 -43.9 -34.2 -1.1 -4.2 -6.0 19 19 A E H 3< S+ 0 0 145 -4,-2.4 -1,-0.3 1,-0.3 -2,-0.2 0.905 110.7 45.1 -73.4 -36.8 -3.5 -7.0 -6.9 20 20 A I T << S+ 0 0 37 -4,-1.6 30,-0.4 -3,-0.9 -1,-0.3 0.259 131.9 25.4 -87.4 16.1 -5.8 -6.1 -4.0 21 21 A A <> + 0 0 2 -3,-0.9 2,-2.4 -4,-0.5 4,-1.3 -0.112 63.8 172.1-174.4 63.6 -5.3 -2.4 -4.9 22 22 A P T 4 S+ 0 0 101 0, 0.0 -3,-0.1 0, 0.0 4,-0.1 -0.229 84.9 37.1 -75.4 51.8 -4.5 -1.9 -8.6 23 23 A G T 4 S+ 0 0 27 -2,-2.4 19,-0.3 2,-0.3 18,-0.2 0.238 120.3 36.1-166.0 -41.6 -4.8 1.9 -8.1 24 24 A A T 4 S+ 0 0 1 17,-0.4 13,-1.2 -3,-0.2 14,-1.1 0.883 114.5 53.1 -92.3 -46.8 -3.5 2.9 -4.7 25 25 A F E < +B 36 0B 14 -4,-1.3 -2,-0.3 11,-0.3 2,-0.2 -0.708 68.0 143.8 -89.7 138.1 -0.6 0.5 -4.5 26 26 A A E -B 35 0B 28 9,-1.0 9,-0.8 -2,-0.4 7,-0.2 -0.786 46.8-116.6-173.6 126.3 1.9 0.5 -7.4 27 27 A M E -B 34 0B 110 7,-0.3 7,-0.3 -2,-0.2 5,-0.1 -0.283 33.4-156.2 -63.8 153.0 5.7 0.1 -7.7 28 28 A D E > -B 33 0B 52 5,-0.7 5,-0.5 1,-0.1 4,-0.3 -0.889 26.1-129.2-129.6 163.7 7.5 3.1 -9.1 29 29 A P T 5S+ 0 0 103 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.674 114.2 50.6 -83.6 -18.3 10.9 3.5 -10.9 30 30 A E T 5S+ 0 0 172 1,-0.1 -3,-0.0 3,-0.1 0, 0.0 0.877 127.6 23.7 -84.2 -39.2 11.8 6.2 -8.3 31 31 A I T 5S- 0 0 45 2,-0.2 -1,-0.1 4,-0.0 3,-0.0 0.441 90.8-151.1-101.5 -2.0 10.9 4.0 -5.4 32 32 A E T 5S+ 0 0 152 -4,-0.3 2,-0.3 1,-0.1 -5,-0.1 0.832 72.6 80.9 34.7 34.5 11.4 0.8 -7.5 33 33 A K E > - 0 0 64 -14,-1.1 3,-3.9 -3,-0.2 4,-0.7 -0.619 62.0-155.8-165.9 99.7 -2.9 7.3 -4.4 39 39 A V G >4 S+ 0 0 41 -3,-0.4 3,-0.5 1,-0.3 -15,-0.1 0.830 105.1 52.4 -48.2 -29.7 -4.8 6.5 -1.2 40 40 A E G 34 S+ 0 0 169 1,-0.2 -1,-0.3 -17,-0.1 -16,-0.1 0.555 88.2 82.6 -85.1 -5.0 -7.9 7.0 -3.3 41 41 A G G <4 S+ 0 0 29 -3,-3.9 -17,-0.4 -18,-0.2 2,-0.3 0.865 102.9 25.0 -67.0 -32.2 -6.6 4.5 -5.9 42 42 A A S << S- 0 0 10 -4,-0.7 2,-0.1 -3,-0.5 -21,-0.1 -0.873 85.9-113.5-128.2 163.0 -7.9 1.6 -3.8 43 43 A S > - 0 0 51 -2,-0.3 4,-3.5 1,-0.1 5,-0.2 -0.405 31.4-108.4 -89.5 171.5 -10.8 1.3 -1.2 44 44 A Q H > S+ 0 0 133 1,-0.2 4,-2.0 2,-0.2 5,-0.1 0.880 121.7 52.2 -68.5 -34.6 -10.3 0.6 2.5 45 45 A E H > S+ 0 0 125 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.805 116.4 40.3 -72.4 -23.9 -11.6 -2.9 2.1 46 46 A E H > S+ 0 0 81 2,-0.2 4,-2.8 3,-0.1 5,-0.2 0.875 115.4 50.0 -87.5 -41.1 -9.1 -3.4 -0.7 47 47 A V H X S+ 0 0 3 -4,-3.5 4,-0.9 2,-0.2 -2,-0.2 0.841 111.3 53.9 -63.4 -29.3 -6.5 -1.6 1.1 48 48 A E H >X S+ 0 0 104 -4,-2.0 4,-2.1 -5,-0.2 3,-1.4 0.995 110.8 40.1 -69.4 -64.7 -7.4 -3.9 4.0 49 49 A E H 3X S+ 0 0 131 -4,-1.8 4,-1.9 1,-0.3 -2,-0.2 0.916 114.5 56.0 -52.2 -39.8 -7.1 -7.3 2.2 50 50 A A H 3< S+ 0 0 2 -4,-2.8 -1,-0.3 -30,-0.4 -2,-0.2 0.836 104.9 54.0 -62.8 -27.3 -4.0 -5.8 0.6 51 51 A M H << S+ 0 0 19 -3,-1.4 -2,-0.2 -4,-0.9 -1,-0.2 0.933 102.5 55.0 -72.8 -43.6 -2.7 -5.2 4.2 52 52 A D H < S+ 0 0 132 -4,-2.1 -2,-0.2 -5,-0.1 -1,-0.2 0.929 103.9 66.4 -55.4 -42.9 -3.2 -8.8 5.2 53 53 A T S < S+ 0 0 41 -4,-1.9 4,-0.1 -5,-0.2 -3,-0.0 0.269 72.2 76.8 -60.0-160.2 -1.0 -9.8 2.2 54 54 A C S S- 0 0 38 2,-0.1 4,-0.1 4,-0.1 -43,-0.1 0.410 81.5-110.5 66.7 144.6 2.7 -8.9 2.3 55 55 A P S S+ 0 0 81 0, 0.0 3,-0.1 0, 0.0 -44,-0.1 0.981 113.3 9.8 -73.6 -61.0 5.2 -10.8 4.4 56 56 A V S S- 0 0 100 -46,-0.2 2,-3.1 1,-0.2 3,-0.2 0.224 95.7-136.3-102.9 14.7 6.0 -8.1 7.0 57 57 A Q - 0 0 89 1,-0.2 -50,-0.2 -4,-0.1 -1,-0.2 -0.317 19.9-167.7 65.1 -73.3 3.1 -5.8 5.8 58 58 A C + 0 0 8 -2,-3.1 -51,-3.4 1,-0.2 2,-0.3 0.719 53.4 111.3 63.9 13.0 5.3 -2.7 5.9 59 59 A I E +A 6 0A 5 -53,-0.3 2,-0.3 -3,-0.2 -1,-0.2 -0.880 40.4 165.3-119.2 152.3 1.9 -0.9 5.5 60 60 A H E -A 5 0A 86 -55,-1.8 -55,-2.3 -2,-0.3 2,-0.1 -0.971 32.4-103.9-156.1 170.3 -0.0 1.3 8.0 61 61 A W E -A 4 0A 77 -57,-0.3 -57,-0.4 -2,-0.3 2,-0.3 -0.410 21.9-137.3 -94.1 175.1 -2.9 3.8 8.2 62 62 A E E A 3 0A 97 -59,-1.7 -59,-1.4 -2,-0.1 -58,-0.2 -0.739 360.0 360.0-136.8 89.2 -2.6 7.5 8.6 63 63 A D 0 0 158 -2,-0.3 -61,-0.1 -61,-0.2 -59,-0.1 -0.145 360.0 360.0 -54.9 360.0 -5.1 9.1 11.1