==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 30-MAR-06 2DIM . COMPND 2 MOLECULE: CELL DIVISION CYCLE 5-LIKE PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.YONEYAMA,N.TOCHIO,S.KOSHIBA,M.INOUE,T.KIGAWA,S.YOKOYAMA, . 70 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5735.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 57.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 34.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 4.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 140 0, 0.0 2,-0.3 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 -74.4 -19.4 -0.6 -11.1 2 2 A S - 0 0 115 1,-0.1 0, 0.0 0, 0.0 0, 0.0 -0.853 360.0 -72.1-128.4 164.0 -20.8 2.7 -9.8 3 3 A S S S+ 0 0 122 -2,-0.3 2,-0.3 2,-0.0 -1,-0.1 -0.212 83.9 80.9 -54.3 139.8 -19.4 5.9 -8.3 4 4 A G - 0 0 45 1,-0.1 3,-0.1 -3,-0.0 -1,-0.0 -0.975 69.0-112.9 155.5-166.8 -18.2 5.5 -4.8 5 5 A S S S+ 0 0 61 -2,-0.3 5,-0.1 1,-0.1 38,-0.1 0.600 83.1 72.1-128.9 -54.5 -15.3 4.3 -2.6 6 6 A S + 0 0 114 36,-0.1 2,-0.3 3,-0.1 -1,-0.1 -0.315 62.5 111.8 -68.8 152.2 -16.3 1.2 -0.6 7 7 A G S > S- 0 0 49 3,-0.1 2,-1.0 -3,-0.1 3,-0.6 -0.954 71.0 -47.0 165.0 178.6 -16.8 -2.1 -2.4 8 8 A K T 3 S- 0 0 213 -2,-0.3 -2,-0.0 1,-0.3 3,-0.0 -0.639 116.6 -31.3 -78.4 102.0 -15.5 -5.6 -2.9 9 9 A G T 3 S- 0 0 38 -2,-1.0 -1,-0.3 1,-0.1 -3,-0.1 0.944 87.2-132.8 53.5 54.3 -11.7 -5.3 -3.4 10 10 A G < - 0 0 19 -3,-0.6 -3,-0.1 -5,-0.1 -1,-0.1 0.109 27.3 -94.1 -34.4 147.2 -12.0 -1.9 -5.0 11 11 A V - 0 0 125 1,-0.0 2,-0.3 -3,-0.0 39,-0.1 0.060 38.8-145.8 -58.9 176.4 -9.9 -1.5 -8.1 12 12 A W - 0 0 26 -3,-0.0 2,-0.3 38,-0.0 -1,-0.0 -0.983 3.5-148.9-152.5 137.8 -6.4 -0.0 -8.1 13 13 A R > - 0 0 171 -2,-0.3 4,-2.4 1,-0.1 5,-0.3 -0.823 33.9-108.7-109.4 147.6 -4.3 2.1 -10.5 14 14 A N H > S+ 0 0 101 -2,-0.3 4,-3.1 1,-0.2 5,-0.2 0.859 120.7 52.1 -34.7 -53.4 -0.6 2.0 -11.0 15 15 A T H > S+ 0 0 69 1,-0.2 4,-2.6 2,-0.2 5,-0.3 0.959 108.1 48.4 -50.7 -61.2 -0.4 5.4 -9.2 16 16 A E H > S+ 0 0 18 1,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.888 114.2 48.1 -47.4 -45.3 -2.3 4.3 -6.2 17 17 A D H X S+ 0 0 19 -4,-2.4 4,-3.2 2,-0.2 5,-0.3 0.922 109.1 52.8 -63.2 -45.8 -0.1 1.2 -6.0 18 18 A E H X S+ 0 0 97 -4,-3.1 4,-1.8 -5,-0.3 -2,-0.2 0.932 114.1 42.0 -55.8 -49.4 3.1 3.2 -6.3 19 19 A I H X S+ 0 0 77 -4,-2.6 4,-2.9 2,-0.2 5,-0.2 0.928 118.2 46.4 -64.5 -46.6 2.1 5.5 -3.5 20 20 A L H X S+ 0 0 0 -4,-2.7 4,-2.9 -5,-0.3 5,-0.4 0.983 110.3 50.6 -59.7 -61.5 0.8 2.6 -1.3 21 21 A K H X S+ 0 0 95 -4,-3.2 4,-1.0 1,-0.2 -1,-0.2 0.883 117.5 42.6 -43.5 -47.5 3.8 0.3 -1.8 22 22 A A H >X S+ 0 0 57 -4,-1.8 4,-2.0 -5,-0.3 3,-1.7 0.996 112.8 48.8 -64.4 -66.4 6.1 3.2 -0.9 23 23 A A H >X>S+ 0 0 8 -4,-2.9 4,-2.8 1,-0.3 5,-1.1 0.890 110.3 52.7 -39.0 -55.7 4.1 4.6 2.1 24 24 A V H 3<5S+ 0 0 0 -4,-2.9 4,-0.3 1,-0.3 -1,-0.3 0.830 110.7 48.9 -52.5 -33.9 3.8 1.1 3.5 25 25 A M H <<5S+ 0 0 130 -3,-1.7 -1,-0.3 -4,-1.0 -2,-0.2 0.809 119.3 38.0 -76.3 -31.3 7.6 0.8 3.2 26 26 A K H <<5S+ 0 0 162 -4,-2.0 -2,-0.2 -3,-0.6 -3,-0.2 0.960 131.8 24.1 -82.4 -63.6 8.2 4.2 4.8 27 27 A Y T <5S- 0 0 63 -4,-2.8 -3,-0.2 1,-0.2 -2,-0.1 0.805 112.3-131.3 -72.9 -30.2 5.5 4.3 7.6 28 28 A G < - 0 0 17 -5,-1.1 2,-0.8 -4,-0.3 3,-0.5 -0.367 33.6 -56.4 104.1 174.5 5.4 0.5 7.7 29 29 A K S S+ 0 0 89 1,-0.2 -1,-0.1 -2,-0.1 -5,-0.1 -0.184 125.2 63.2 -85.7 43.2 2.6 -2.1 7.6 30 30 A N S S+ 0 0 111 -2,-0.8 2,-0.6 -6,-0.1 3,-0.5 0.570 84.4 64.5-131.3 -39.3 1.0 -0.5 10.7 31 31 A Q > + 0 0 65 -3,-0.5 4,-2.8 1,-0.2 5,-0.2 -0.099 60.0 136.9 -82.9 38.1 -0.0 3.0 9.7 32 32 A W H > + 0 0 11 -2,-0.6 4,-2.1 1,-0.2 -1,-0.2 0.858 69.9 54.2 -52.0 -38.0 -2.5 1.5 7.2 33 33 A S H > S+ 0 0 82 -3,-0.5 4,-1.1 2,-0.2 -1,-0.2 0.953 109.8 44.3 -62.5 -51.8 -5.0 4.1 8.4 34 34 A R H >> S+ 0 0 138 1,-0.2 4,-0.8 2,-0.2 3,-0.5 0.902 111.5 54.7 -60.1 -42.9 -2.7 7.1 7.8 35 35 A I H >X S+ 0 0 0 -4,-2.8 3,-1.3 1,-0.2 4,-1.1 0.906 98.6 62.3 -57.9 -43.9 -1.7 5.6 4.4 36 36 A A H 3< S+ 0 0 7 -4,-2.1 3,-0.5 1,-0.3 6,-0.3 0.871 95.2 61.6 -49.7 -41.1 -5.3 5.4 3.3 37 37 A S H << S+ 0 0 106 -4,-1.1 -1,-0.3 -3,-0.5 -2,-0.2 0.870 96.0 60.7 -54.8 -38.8 -5.6 9.2 3.6 38 38 A L H << S+ 0 0 83 -3,-1.3 2,-0.3 -4,-0.8 -1,-0.2 0.917 102.7 57.5 -55.5 -46.6 -2.9 9.5 0.9 39 39 A L S >< S- 0 0 8 -4,-1.1 3,-0.8 -3,-0.5 2,-0.3 -0.695 90.5-121.9 -90.7 139.4 -5.1 7.7 -1.6 40 40 A H T 3 S+ 0 0 126 -2,-0.3 3,-0.1 1,-0.2 -3,-0.1 -0.634 93.8 11.9 -82.1 133.1 -8.6 9.0 -2.4 41 41 A R T 3 S+ 0 0 137 -2,-0.3 2,-0.3 1,-0.3 -1,-0.2 0.851 104.6 119.8 71.3 35.3 -11.5 6.7 -1.8 42 42 A K < - 0 0 34 -3,-0.8 2,-0.3 -6,-0.3 -1,-0.3 -0.936 40.0-171.6-131.5 154.5 -9.3 4.3 0.2 43 43 A S >> - 0 0 60 -2,-0.3 4,-2.8 -38,-0.1 3,-0.6 -0.935 44.3 -95.0-141.5 163.2 -9.3 2.9 3.7 44 44 A A H 3> S+ 0 0 38 -2,-0.3 4,-2.9 1,-0.3 5,-0.3 0.861 124.9 55.5 -43.9 -42.8 -7.1 0.8 6.0 45 45 A K H 3> S+ 0 0 145 2,-0.2 4,-2.6 1,-0.2 -1,-0.3 0.931 112.9 40.0 -58.1 -48.3 -9.1 -2.2 5.0 46 46 A Q H <>>S+ 0 0 12 -3,-0.6 4,-3.0 2,-0.2 5,-0.5 0.966 116.2 48.8 -66.1 -54.6 -8.4 -1.6 1.3 47 47 A C H X5S+ 0 0 0 -4,-2.8 4,-1.3 1,-0.2 -2,-0.2 0.894 117.4 43.1 -52.4 -43.8 -4.8 -0.6 1.7 48 48 A K H X5S+ 0 0 95 -4,-2.9 4,-2.2 -5,-0.4 5,-0.2 0.901 119.4 43.5 -70.2 -42.3 -4.2 -3.6 3.9 49 49 A A H X5S+ 0 0 23 -4,-2.6 4,-2.9 -5,-0.3 -2,-0.2 0.995 113.4 47.0 -66.2 -65.2 -6.2 -5.9 1.6 50 50 A R H X>S+ 0 0 43 -4,-3.0 4,-2.0 2,-0.2 5,-1.3 0.851 116.6 49.7 -45.0 -40.3 -4.9 -4.7 -1.8 51 51 A W H <