==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFUNGAL PROTEIN 07-DEC-99 1DKC . COMPND 2 MOLECULE: ANTIFUNGAL PEPTIDE; . SOURCE 2 ORGANISM_SCIENTIFIC: PHYTOLACCA AMERICANA; . AUTHOR D.C.WANG,G.H.GAO,F.SHAO,J.X.DAI,J.F.WANG . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2674.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 43.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 121 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-175.9 12.2 -4.4 -4.7 2 2 A G - 0 0 75 1,-0.0 2,-0.3 2,-0.0 18,-0.0 -0.224 360.0-180.0 -69.1 165.0 11.2 -6.0 -1.4 3 3 A a - 0 0 66 17,-0.1 2,-0.4 5,-0.0 16,-0.1 -0.950 24.8-118.5-155.5 174.5 7.6 -5.5 -0.0 4 4 A I - 0 0 97 -2,-0.3 16,-0.6 1,-0.1 3,-0.5 -0.974 12.5-171.5-128.6 125.3 5.4 -6.4 2.9 5 5 A K S S+ 0 0 89 -2,-0.4 2,-1.3 1,-0.2 3,-0.4 0.951 88.1 44.4 -77.9 -51.9 2.2 -8.5 2.7 6 6 A N S S+ 0 0 133 1,-0.2 -1,-0.2 30,-0.1 30,-0.1 -0.398 138.7 0.0 -91.4 61.8 0.8 -8.0 6.2 7 7 A G S S+ 0 0 45 -2,-1.3 -1,-0.2 28,-0.8 2,-0.2 0.643 80.1 168.1 125.4 61.7 1.5 -4.2 6.5 8 8 A G E -A 35 0A 5 27,-1.6 27,-3.5 -3,-0.4 2,-0.5 -0.676 28.6-129.8 -99.2 156.6 3.1 -2.7 3.4 9 9 A R E +A 34 0A 155 25,-0.3 2,-0.3 -2,-0.2 25,-0.3 -0.892 35.2 157.8-108.9 131.9 3.4 1.1 2.7 10 10 A b E -A 33 0A 10 23,-3.2 23,-2.3 -2,-0.5 2,-0.3 -0.890 30.0-145.0-142.2 173.5 2.2 2.7 -0.6 11 11 A N > + 0 0 29 -2,-0.3 3,-0.6 21,-0.2 21,-0.1 -0.773 13.1 177.4-146.8 99.2 1.1 6.1 -2.0 12 12 A A T 3 S+ 0 0 59 -2,-0.3 3,-0.4 1,-0.2 -1,-0.1 0.635 87.2 57.1 -76.0 -11.1 -1.6 6.3 -4.7 13 13 A S T 3 S+ 0 0 66 1,-0.2 -1,-0.2 2,-0.1 19,-0.0 0.637 109.7 42.1 -93.5 -15.4 -1.3 10.1 -4.6 14 14 A A S < S- 0 0 76 -3,-0.6 -1,-0.2 17,-0.1 -2,-0.1 -0.109 137.3 -60.1-122.4 38.5 2.5 10.3 -5.4 15 15 A G - 0 0 57 -3,-0.4 -3,-0.1 1,-0.1 -2,-0.1 0.934 56.8-133.3 84.5 78.7 2.8 7.6 -8.2 16 16 A P - 0 0 79 0, 0.0 -1,-0.1 0, 0.0 -4,-0.1 -0.512 27.2-179.9 -67.2 110.1 1.7 4.3 -6.8 17 17 A P - 0 0 97 0, 0.0 2,-0.3 0, 0.0 -7,-0.1 0.974 50.5 -57.6 -75.9 -78.5 4.4 1.8 -7.8 18 18 A Y - 0 0 126 5,-0.0 2,-0.1 3,-0.0 17,-0.1 -0.903 41.3-138.0-169.8 138.7 3.3 -1.7 -6.5 19 19 A c - 0 0 18 -2,-0.3 3,-0.3 -3,-0.1 -14,-0.1 -0.311 35.9-102.0 -91.8-178.4 2.5 -3.3 -3.1 20 20 A a S S+ 0 0 23 -16,-0.6 -15,-0.2 3,-0.2 -1,-0.1 0.847 120.1 21.6 -75.1 -32.9 3.5 -6.7 -1.8 21 21 A S S S- 0 0 29 2,-0.4 -1,-0.2 -17,-0.3 3,-0.1 0.060 114.0-100.8-123.3 27.8 0.1 -8.4 -2.5 22 22 A S S S+ 0 0 116 -3,-0.3 2,-0.3 1,-0.2 15,-0.1 0.412 91.8 109.8 71.1 -4.1 -1.3 -5.9 -5.1 23 23 A Y E +B 36 0A 105 13,-1.2 13,-0.8 -18,-0.1 -2,-0.4 -0.800 39.2 173.7-105.6 148.9 -3.5 -4.2 -2.5 24 24 A b E -B 35 0A 46 -2,-0.3 2,-0.7 11,-0.3 11,-0.3 -0.898 14.5-159.8-152.4 117.0 -3.0 -0.7 -1.0 25 25 A F E +B 34 0A 112 9,-4.5 9,-2.9 -2,-0.3 2,-0.3 -0.856 23.5 164.3-102.2 109.9 -5.4 1.1 1.4 26 26 A Q E -B 33 0A 49 -2,-0.7 2,-0.3 7,-0.3 7,-0.2 -0.935 18.2-156.5-125.6 149.1 -4.9 4.9 1.4 27 27 A I E >> -B 32 0A 75 5,-1.4 2,-1.3 -2,-0.3 5,-0.6 -0.794 30.7-101.8-120.3 164.7 -7.1 7.7 2.7 28 28 A A T 45S+ 0 0 113 -2,-0.3 -2,-0.0 1,-0.1 0, 0.0 -0.654 95.7 68.9 -87.6 91.4 -7.5 11.5 1.9 29 29 A G T 45S+ 0 0 63 -2,-1.3 -1,-0.1 3,-0.0 -3,-0.0 0.099 110.7 7.0-162.3 -69.7 -5.6 13.2 4.7 30 30 A Q T 45S- 0 0 153 -3,-0.2 -2,-0.1 2,-0.1 0, 0.0 0.330 98.8-107.8-111.1 5.3 -1.8 12.8 4.9 31 31 A S T <5S+ 0 0 53 -4,-0.6 2,-0.4 1,-0.2 -3,-0.1 0.987 71.5 139.2 67.6 58.0 -1.4 11.0 1.5 32 32 A Y E < - B 0 27A 89 -5,-0.6 -5,-1.4 -21,-0.1 2,-0.3 -0.995 29.0-176.0-137.6 136.4 -0.6 7.5 2.9 33 33 A G E -AB 10 26A 0 -23,-2.3 -23,-3.2 -2,-0.4 2,-0.4 -0.949 14.0-145.2-129.6 151.9 -1.7 4.0 1.9 34 34 A V E -AB 9 25A 64 -9,-2.9 -9,-4.5 -2,-0.3 -25,-0.3 -0.935 17.6-132.4-118.0 137.0 -1.1 0.5 3.4 35 35 A c E +AB 8 24A 4 -27,-3.5 -27,-1.6 -2,-0.4 -28,-0.8 -0.572 32.3 159.8 -88.3 152.8 -0.6 -2.6 1.3 36 36 A K E B 0 23A 72 -13,-0.8 -13,-1.2 -2,-0.2 -15,-0.3 -0.846 360.0 360.0-151.7-173.0 -2.4 -5.9 2.0 37 37 A N 0 0 105 -2,-0.2 -1,-0.2 -15,-0.1 -16,-0.1 0.049 360.0 360.0 -76.7 360.0 -3.5 -9.2 0.4