==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 08-DEC-99 1DL0 . COMPND 2 MOLECULE: J-ATRACOTOXIN-HV1C; . SOURCE 2 SYNTHETIC: YES; . AUTHOR X.H.WANG,G.F.KING . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2908.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 43.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 152 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 159.7 1.3 1.0 -0.6 2 2 A I - 0 0 142 15,-0.1 2,-0.2 1,-0.0 0, 0.0 -0.351 360.0-159.6 -66.4 148.0 0.6 2.2 3.0 3 3 A a - 0 0 41 1,-0.2 13,-0.2 11,-0.1 -1,-0.0 -0.710 22.0-120.3-122.5 175.7 -1.3 5.5 3.2 4 4 A T - 0 0 35 11,-1.3 -1,-0.2 -2,-0.2 12,-0.1 0.959 48.4-123.5 -81.3 -73.4 -1.8 8.1 6.0 5 5 A G > - 0 0 14 3,-0.2 3,-0.8 12,-0.1 27,-0.4 -0.330 25.8 -72.0 134.7 141.8 -5.5 8.3 6.6 6 6 A A T 3 S+ 0 0 28 1,-0.2 27,-0.2 -2,-0.1 26,-0.1 -0.019 116.9 27.0 -52.4 164.8 -8.3 10.9 6.6 7 7 A D T 3 S+ 0 0 104 25,-0.7 -1,-0.2 1,-0.2 26,-0.2 0.771 106.8 106.6 50.7 24.8 -8.4 13.5 9.4 8 8 A R S < S- 0 0 155 -3,-0.8 24,-4.2 24,-0.2 2,-0.4 -0.912 80.7 -95.8-130.8 159.1 -4.6 13.0 9.6 9 9 A P B -A 31 0A 67 0, 0.0 22,-0.3 0, 0.0 13,-0.0 -0.588 43.8-118.6 -76.2 124.9 -1.6 15.1 8.6 10 10 A b - 0 0 32 20,-1.0 2,-0.3 -2,-0.4 20,-0.1 0.022 29.2-133.6 -53.4 170.5 -0.1 14.1 5.2 11 11 A A - 0 0 49 3,-1.2 -1,-0.1 1,-0.2 -7,-0.1 -0.910 16.9-111.5-130.2 158.8 3.5 12.9 5.0 12 12 A A S S+ 0 0 113 -2,-0.3 -1,-0.2 1,-0.2 -2,-0.0 0.977 114.5 28.9 -51.5 -65.9 6.5 13.6 2.8 13 13 A C S S+ 0 0 104 -3,-0.1 -1,-0.2 1,-0.0 -3,-0.0 0.944 114.6 68.4 -50.9 -46.7 6.6 10.2 1.1 14 14 A C - 0 0 34 1,-0.1 -3,-1.2 -11,-0.0 -11,-0.1 -0.525 60.0-147.0-122.0 136.6 3.0 9.3 1.2 15 15 A P - 0 0 93 0, 0.0 -11,-1.3 0, 0.0 -1,-0.1 -0.329 44.6 -84.9 -85.0 170.1 -0.4 10.3 -0.2 16 16 A c - 0 0 16 -13,-0.2 3,-0.1 -12,-0.1 6,-0.1 -0.315 58.2 -83.2 -72.4 161.0 -3.7 10.0 1.7 17 17 A a > - 0 0 27 1,-0.2 3,-1.0 4,-0.1 2,-0.7 -0.072 62.5 -75.6 -56.6 166.7 -5.6 6.6 1.7 18 18 A P T 3 S+ 0 0 131 0, 0.0 -1,-0.2 0, 0.0 3,-0.1 -0.549 126.2 26.6 -70.0 108.8 -7.9 5.8 -1.3 19 19 A G T 3 S+ 0 0 45 -2,-0.7 16,-1.4 1,-0.6 2,-0.2 -0.176 110.0 78.5 128.4 -37.3 -11.0 7.9 -0.7 20 20 A T E < -B 34 0A 23 -3,-1.0 -1,-0.6 14,-0.2 2,-0.3 -0.669 66.4-153.5 -98.5 155.1 -9.3 10.7 1.3 21 21 A S E -B 33 0A 41 12,-1.6 12,-1.3 -2,-0.2 2,-0.4 -0.969 18.0-114.7-132.0 148.4 -7.2 13.5 -0.4 22 22 A b E +B 32 0A 67 -2,-0.3 2,-0.4 10,-0.2 10,-0.2 -0.630 37.1 174.9 -81.3 132.6 -4.3 15.7 0.8 23 23 A K E -B 31 0A 70 8,-1.5 8,-1.7 -2,-0.4 -13,-0.1 -0.970 22.5-137.6-141.4 123.6 -5.2 19.4 1.0 24 24 A A E -B 30 0A 71 -2,-0.4 6,-0.2 6,-0.3 2,-0.2 -0.313 20.9-151.6 -74.4 163.4 -3.0 22.2 2.4 25 25 A E > - 0 0 111 4,-1.0 3,-0.9 1,-0.1 -1,-0.1 -0.707 31.0 -99.1-127.0-179.8 -4.5 24.9 4.6 26 26 A S T 3 S+ 0 0 125 1,-0.2 4,-0.1 -2,-0.2 -1,-0.1 0.850 115.6 70.3 -71.3 -32.2 -3.7 28.5 5.4 27 27 A N T 3 S- 0 0 99 2,-0.2 -1,-0.2 1,-0.1 3,-0.1 0.746 115.3-113.9 -58.0 -19.5 -1.9 27.5 8.6 28 28 A G S < S+ 0 0 62 -3,-0.9 2,-0.3 1,-0.4 -1,-0.1 0.161 86.1 102.1 105.6 -19.0 0.8 26.1 6.3 29 29 A V - 0 0 66 -5,-0.1 -4,-1.0 -6,-0.0 -1,-0.4 -0.734 60.8-144.2 -99.3 148.1 0.3 22.5 7.3 30 30 A S E - B 0 24A 37 -2,-0.3 -20,-1.0 -6,-0.2 2,-0.3 -0.880 17.4-178.8-112.4 143.7 -1.6 20.0 5.1 31 31 A Y E -AB 9 23A 81 -8,-1.7 -8,-1.5 -2,-0.4 2,-0.2 -0.957 28.8-109.3-136.3 157.1 -3.9 17.2 6.4 32 32 A c E - B 0 22A 0 -24,-4.2 -25,-0.7 -27,-0.4 2,-0.3 -0.511 32.1-174.2 -83.0 155.2 -6.0 14.5 4.7 33 33 A R E - B 0 21A 102 -12,-1.3 -12,-1.6 -27,-0.2 3,-0.1 -0.956 29.8-108.7-151.5 127.7 -9.8 14.8 4.7 34 34 A K E - B 0 20A 112 -2,-0.3 -14,-0.2 -14,-0.2 -15,-0.0 -0.189 49.3 -91.8 -55.4 148.3 -12.3 12.2 3.4 35 35 A D - 0 0 105 -16,-1.4 -1,-0.1 1,-0.1 -15,-0.0 -0.121 43.5-135.2 -57.4 160.0 -14.1 13.2 0.2 36 36 A E 0 0 166 1,-0.1 -1,-0.1 -3,-0.1 -3,-0.0 -0.781 360.0 360.0-118.3 164.8 -17.4 15.1 0.6 37 37 A P 0 0 188 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.164 360.0 360.0 -86.5 360.0 -20.9 14.8 -1.2