==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METALLOTHIONEIN 22-NOV-94 1DMC . COMPND 2 MOLECULE: CD6 METALLOTHIONEIN-1; . SOURCE 2 ORGANISM_SCIENTIFIC: CALLINECTES SAPIDUS; . AUTHOR S.S.NARULA,M.BROUWER,Y.HUA,I.M.ARMITAGE . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2876.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 41.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 137 0, 0.0 2,-0.1 0, 0.0 25,-0.0 0.000 360.0 360.0 360.0 119.8 7.4 6.0 0.9 2 2 A P - 0 0 37 0, 0.0 5,-0.1 0, 0.0 8,-0.0 -0.345 360.0-118.4 -72.6 142.8 6.4 2.3 0.9 3 3 A C >> - 0 0 49 1,-0.1 3,-0.9 -2,-0.1 4,-0.6 0.252 45.1 -75.3 -66.7-166.4 6.7 0.2 3.9 4 4 A Q T 34 S+ 0 0 181 1,-0.2 -1,-0.1 2,-0.1 0, 0.0 0.182 130.6 40.1 -83.5 20.1 8.8 -3.0 4.4 5 5 A K T 34 S+ 0 0 157 2,-0.0 6,-0.4 16,-0.0 -1,-0.2 0.205 102.1 66.9-149.0 13.8 6.5 -5.1 2.3 6 6 A C T <> S+ 0 0 1 -3,-0.9 4,-0.6 4,-0.2 3,-0.4 0.592 75.6 84.7-112.6 -20.9 5.5 -2.8 -0.6 7 7 A T T >< S- 0 0 121 -4,-0.6 3,-0.6 1,-0.3 -3,-0.1 0.927 119.7 -1.0 -49.5 -88.9 8.8 -2.4 -2.4 8 8 A S T 34 S+ 0 0 133 1,-0.2 -1,-0.3 2,-0.0 -2,-0.1 0.088 142.0 56.1 -89.2 27.4 8.9 -5.4 -4.7 9 9 A G T 34 + 0 0 26 -3,-0.4 2,-1.9 3,-0.0 -2,-0.2 -0.044 54.2 160.8-150.5 46.4 5.5 -6.4 -3.1 10 10 A C << + 0 0 47 -4,-0.6 -4,-0.2 -3,-0.6 8,-0.1 -0.471 11.6 171.5 -70.1 90.0 2.8 -3.7 -3.5 11 11 A K + 0 0 174 -2,-1.9 2,-0.7 -6,-0.4 -1,-0.2 0.378 40.4 109.9 -83.5 7.7 -0.0 -6.1 -2.9 12 12 A C + 0 0 16 1,-0.2 3,-0.1 5,-0.1 -2,-0.0 -0.731 27.6 156.8 -87.4 117.4 -2.5 -3.2 -2.7 13 13 A A S S+ 0 0 90 -2,-0.7 2,-0.3 1,-0.3 -1,-0.2 0.676 74.2 18.3-107.7 -27.1 -4.8 -3.2 -5.7 14 14 A T S >> S- 0 0 81 16,-0.1 4,-2.5 1,-0.0 3,-1.6 -0.927 86.3-106.5-137.0 160.8 -7.6 -1.3 -4.0 15 15 A K H 3> S+ 0 0 149 -2,-0.3 4,-1.8 1,-0.3 5,-0.1 0.667 115.5 73.6 -65.9 -8.5 -7.7 0.9 -0.9 16 16 A E H 34 S+ 0 0 149 2,-0.2 -1,-0.3 1,-0.2 -4,-0.0 0.848 111.1 26.5 -72.4 -29.1 -9.5 -2.0 0.7 17 17 A E H X> S+ 0 0 111 -3,-1.6 4,-1.5 2,-0.1 3,-1.1 0.780 120.9 55.6 -98.9 -36.0 -6.2 -3.9 0.8 18 18 A C H 3X S+ 0 0 6 -4,-2.5 4,-2.4 1,-0.3 6,-0.2 0.907 105.9 51.3 -63.7 -41.6 -3.9 -0.9 0.9 19 19 A S H 3< S+ 0 0 85 -4,-1.8 -1,-0.3 -5,-0.2 -2,-0.1 0.537 107.8 58.0 -74.0 -2.8 -5.7 0.5 4.0 20 20 A K H <4 S+ 0 0 172 -3,-1.1 -2,-0.2 -5,-0.1 -1,-0.2 0.806 119.6 22.2 -96.4 -35.6 -5.1 -3.0 5.5 21 21 A T H < S+ 0 0 78 -4,-1.5 2,-0.2 -3,-0.2 -2,-0.2 0.700 133.4 26.5-102.4 -24.4 -1.3 -3.2 5.2 22 22 A C < - 0 0 15 -4,-2.4 0, 0.0 -5,-0.3 0, 0.0 -0.598 65.5-135.0-123.3-172.4 -0.6 0.5 5.1 23 23 A T S S+ 0 0 132 1,-0.3 -4,-0.1 -2,-0.2 -1,-0.1 0.455 84.7 3.8-123.1 -11.1 -2.2 3.7 6.2 24 24 A K S S- 0 0 160 -6,-0.2 2,-1.4 6,-0.0 -1,-0.3 -0.948 98.4 -60.6-160.4 177.5 -1.8 5.8 3.0 25 25 A P - 0 0 72 0, 0.0 -6,-0.0 0, 0.0 -10,-0.0 -0.550 54.7-159.2 -74.2 92.6 -0.6 5.6 -0.6 26 26 A C - 0 0 24 -2,-1.4 -4,-0.0 1,-0.2 0, 0.0 0.285 50.2 -70.7 -51.1-163.7 3.1 4.7 -0.1 27 27 A S S S+ 0 0 87 1,-0.2 -1,-0.2 -24,-0.0 4,-0.0 0.212 135.4 29.0 -82.4 23.3 5.3 5.6 -3.1 28 28 A C S S+ 0 0 52 2,-0.1 -1,-0.2 -27,-0.0 3,-0.1 0.494 94.9 89.6-150.8 -24.5 3.6 2.7 -5.0 29 29 A C S S- 0 0 17 -5,-0.1 -16,-0.0 1,-0.1 -14,-0.0 0.286 95.4 -46.5 -61.8-154.6 -0.0 2.1 -3.8 30 30 A P 0 0 49 0, 0.0 -2,-0.1 0, 0.0 -1,-0.1 -0.075 360.0 360.0 -70.7 177.0 -2.8 4.1 -5.6 31 31 A K 0 0 268 -3,-0.1 -2,-0.1 -4,-0.0 -3,-0.0 0.563 360.0 360.0-138.0 360.0 -2.7 7.8 -6.3