==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATION 27-APR-06 2DO1 . COMPND 2 MOLECULE: NUCLEAR PROTEIN HCC-1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.SUZUKI,Y.MUTO,M.INOUE,T.KIGAWA,T.TERADA,M.SHIROUZU, . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4997.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 52.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 22 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -2 A G 0 0 126 0, 0.0 2,-0.3 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 -60.3 16.0 5.0 -20.0 2 -1 A S - 0 0 115 1,-0.1 3,-0.1 3,-0.0 0, 0.0 -0.999 360.0 -5.1-146.5 142.7 17.1 1.4 -20.3 3 0 A S S S+ 0 0 138 -2,-0.3 2,-0.2 1,-0.1 -1,-0.1 0.855 97.7 140.9 42.6 42.1 16.4 -1.8 -18.3 4 1 A G - 0 0 64 2,-0.0 2,-0.5 -3,-0.0 -1,-0.1 -0.520 54.9-120.0-107.3 176.7 14.5 0.4 -15.8 5 2 A S - 0 0 94 -2,-0.2 2,-0.9 -3,-0.1 -3,-0.0 -0.928 20.6-172.9-123.7 107.8 11.4 0.1 -13.8 6 3 A S + 0 0 136 -2,-0.5 2,-0.1 1,-0.0 -2,-0.0 -0.788 60.9 40.5-102.0 92.9 8.6 2.6 -14.4 7 4 A G - 0 0 51 -2,-0.9 2,-0.4 2,-0.0 -1,-0.0 -0.079 68.7-129.5 136.2 122.9 5.9 2.0 -11.7 8 5 A V - 0 0 144 -2,-0.1 2,-0.4 4,-0.0 -2,-0.0 -0.779 21.0-166.1 -98.3 138.7 5.8 1.1 -8.0 9 6 A E > - 0 0 118 -2,-0.4 4,-0.8 1,-0.1 3,-0.3 -0.979 21.4-146.7-127.2 136.3 3.8 -1.7 -6.6 10 7 A L T >4 S+ 0 0 27 -2,-0.4 3,-1.4 1,-0.2 -1,-0.1 0.925 96.1 68.5 -63.1 -46.1 2.9 -2.5 -3.0 11 8 A H T 34 S+ 0 0 96 1,-0.3 -1,-0.2 26,-0.0 7,-0.1 0.874 95.2 56.6 -38.9 -50.5 3.0 -6.2 -3.5 12 9 A K T 34 S+ 0 0 131 -3,-0.3 -1,-0.3 2,-0.0 -2,-0.2 0.889 91.3 89.6 -51.2 -43.3 6.8 -6.0 -4.0 13 10 A L S << S- 0 0 48 -3,-1.4 2,-0.0 -4,-0.8 -3,-0.0 -0.242 80.8-124.5 -57.6 142.7 7.0 -4.3 -0.6 14 11 A K > - 0 0 157 1,-0.1 4,-2.7 4,-0.0 5,-0.2 -0.205 30.5 -92.5 -81.9 177.1 7.5 -6.7 2.3 15 12 A L H > S+ 0 0 88 1,-0.2 4,-2.3 2,-0.2 5,-0.2 0.910 128.6 49.0 -56.7 -44.8 5.4 -7.1 5.4 16 13 A A H > S+ 0 0 74 1,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.878 111.3 50.0 -63.2 -38.9 7.6 -4.6 7.3 17 14 A E H > S+ 0 0 101 2,-0.2 4,-1.9 1,-0.2 -2,-0.2 0.912 110.5 49.1 -66.4 -43.9 7.4 -2.2 4.4 18 15 A L H X S+ 0 0 0 -4,-2.7 4,-2.0 1,-0.2 -2,-0.2 0.916 111.3 49.4 -62.2 -44.7 3.6 -2.3 4.2 19 16 A K H X S+ 0 0 92 -4,-2.3 4,-2.0 1,-0.2 -1,-0.2 0.880 108.3 54.4 -62.5 -39.0 3.3 -1.8 7.9 20 17 A Q H X S+ 0 0 117 -4,-1.9 4,-2.1 1,-0.2 -1,-0.2 0.903 107.9 49.2 -62.0 -42.8 5.6 1.2 7.8 21 18 A E H X S+ 0 0 75 -4,-1.9 4,-2.1 1,-0.2 -1,-0.2 0.908 110.5 50.0 -63.7 -43.3 3.5 2.9 5.1 22 19 A C H X>S+ 0 0 0 -4,-2.0 5,-2.9 1,-0.2 4,-2.4 0.859 109.0 53.3 -63.8 -36.2 0.3 2.3 7.1 23 20 A L H <5S+ 0 0 117 -4,-2.0 -2,-0.2 3,-0.2 -1,-0.2 0.927 110.4 45.4 -65.2 -46.3 1.9 3.8 10.2 24 21 A A H <5S+ 0 0 84 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.864 116.5 46.4 -65.3 -37.0 3.0 7.0 8.3 25 22 A R H <5S- 0 0 98 -4,-2.1 -2,-0.2 -5,-0.2 -1,-0.2 0.840 114.3-118.1 -74.3 -34.4 -0.5 7.3 6.7 26 23 A G T <5 + 0 0 60 -4,-2.4 -3,-0.2 1,-0.2 2,-0.2 0.794 64.3 135.4 99.1 36.5 -2.2 6.6 10.0 27 24 A L < - 0 0 35 -5,-2.9 2,-0.7 -6,-0.1 -1,-0.2 -0.531 65.4 -76.9-108.4 176.7 -4.1 3.4 9.2 28 25 A E - 0 0 108 -2,-0.2 2,-0.5 1,-0.1 11,-0.1 -0.655 33.0-160.8 -79.1 113.3 -4.6 0.2 11.1 29 26 A T + 0 0 52 -2,-0.7 2,-0.2 -7,-0.1 -1,-0.1 -0.131 54.4 116.1 -85.6 39.7 -1.5 -1.9 10.8 30 27 A K + 0 0 143 -2,-0.5 2,-0.2 5,-0.1 -2,-0.0 -0.611 47.9 35.0-105.1 167.0 -3.5 -5.1 11.7 31 28 A G S S- 0 0 48 -2,-0.2 2,-0.1 4,-0.1 -2,-0.0 -0.529 91.7 -50.0 92.5-161.1 -4.2 -8.2 9.7 32 29 A I > - 0 0 94 -2,-0.2 4,-2.3 1,-0.0 3,-0.3 -0.405 64.2 -80.1-105.6-176.0 -1.9 -10.0 7.2 33 30 A K H > S+ 0 0 97 1,-0.3 4,-2.3 2,-0.2 5,-0.2 0.910 132.6 49.0 -50.3 -48.1 0.1 -8.8 4.2 34 31 A Q H > S+ 0 0 145 1,-0.2 4,-3.0 2,-0.2 -1,-0.3 0.860 108.4 54.9 -61.4 -36.4 -3.0 -8.8 2.0 35 32 A D H > S+ 0 0 84 -3,-0.3 4,-1.9 2,-0.2 -1,-0.2 0.897 109.2 46.8 -64.2 -41.7 -4.9 -6.8 4.7 36 33 A L H X S+ 0 0 0 -4,-2.3 4,-2.0 2,-0.2 -2,-0.2 0.919 116.2 44.1 -66.9 -45.0 -2.2 -4.1 4.7 37 34 A I H X S+ 0 0 15 -4,-2.3 4,-2.8 -5,-0.2 5,-0.2 0.934 111.9 52.4 -65.7 -47.8 -2.1 -3.9 0.9 38 35 A H H X S+ 0 0 139 -4,-3.0 4,-2.4 1,-0.2 -1,-0.2 0.905 112.1 46.3 -55.0 -44.7 -5.9 -4.0 0.5 39 36 A R H X S+ 0 0 108 -4,-1.9 4,-2.0 -5,-0.2 -1,-0.2 0.889 111.3 52.2 -66.2 -40.3 -6.2 -1.1 3.0 40 37 A L H X S+ 0 0 1 -4,-2.0 4,-2.2 2,-0.2 -2,-0.2 0.917 111.8 45.8 -62.4 -44.9 -3.5 0.8 1.3 41 38 A Q H X S+ 0 0 84 -4,-2.8 4,-2.9 2,-0.2 5,-0.3 0.933 110.7 52.4 -64.3 -47.5 -5.2 0.5 -2.1 42 39 A A H X S+ 0 0 40 -4,-2.4 4,-1.9 -5,-0.2 -1,-0.2 0.881 112.1 46.7 -56.1 -40.6 -8.6 1.4 -0.8 43 40 A Y H X S+ 0 0 65 -4,-2.0 4,-3.2 2,-0.2 -1,-0.2 0.898 111.6 50.6 -69.3 -41.7 -7.1 4.6 0.8 44 41 A L H < S+ 0 0 80 -4,-2.2 -2,-0.2 2,-0.2 -1,-0.2 0.928 111.9 46.8 -62.1 -46.9 -5.3 5.5 -2.4 45 42 A E H >< S+ 0 0 143 -4,-2.9 3,-1.0 1,-0.2 -1,-0.2 0.900 116.3 45.2 -62.4 -42.0 -8.4 5.1 -4.5 46 43 A E H 3< S+ 0 0 149 -4,-1.9 -2,-0.2 -5,-0.3 -1,-0.2 0.941 118.5 41.2 -67.4 -48.9 -10.4 7.1 -2.1 47 44 A H T 3< S+ 0 0 103 -4,-3.2 -1,-0.3 -5,-0.2 -2,-0.2 -0.155 86.8 166.7 -92.3 39.4 -7.8 9.9 -1.6 48 45 A A < - 0 0 62 -3,-1.0 -3,-0.1 -2,-0.2 3,-0.0 -0.281 22.9-164.8 -57.3 135.9 -7.0 9.9 -5.3 49 46 A E + 0 0 200 -5,-0.1 2,-0.2 2,-0.1 -1,-0.1 0.936 69.6 46.5 -87.2 -60.2 -5.0 12.9 -6.4 50 47 A S S S- 0 0 104 1,-0.1 -1,-0.1 2,-0.0 0, 0.0 -0.548 96.3 -98.1 -85.7 150.5 -5.3 13.0 -10.2 51 48 A G - 0 0 56 -2,-0.2 -1,-0.1 1,-0.1 -2,-0.1 -0.344 20.2-131.0 -68.1 146.2 -8.6 12.5 -11.9 52 49 A P + 0 0 128 0, 0.0 -1,-0.1 0, 0.0 2,-0.1 0.662 61.7 135.9 -69.8 -16.3 -9.6 9.1 -13.3 53 50 A S - 0 0 115 1,-0.1 2,-0.2 2,-0.0 -2,-0.1 -0.065 37.5-175.9 -38.0 95.1 -10.5 10.7 -16.6 54 51 A S 0 0 124 -2,-0.1 -1,-0.1 0, 0.0 -3,-0.0 -0.659 360.0 360.0-100.8 157.3 -8.8 8.1 -18.8 55 52 A G 0 0 124 -2,-0.2 -2,-0.0 0, 0.0 0, 0.0 -0.764 360.0 360.0 92.0 360.0 -8.5 8.2 -22.6