==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 27-APR-06 2DO5 . COMPND 2 MOLECULE: SPLICING FACTOR 3B SUBUNIT 2; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.SUZUKI,Y.MUTO,M.INOUE,T.KIGAWA,T.TERADA,M.SHIROUZU, . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4745.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 51.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 22 37.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -6 A G 0 0 143 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 102.8 2.4 28.5 -7.8 2 -5 A S - 0 0 117 2,-0.0 2,-1.9 0, 0.0 0, 0.0 -0.963 360.0-118.7-123.9 138.3 3.2 25.0 -6.4 3 -4 A S + 0 0 126 -2,-0.4 2,-0.6 2,-0.0 0, 0.0 -0.517 42.8 177.5 -74.4 83.8 4.4 22.0 -8.3 4 -3 A G + 0 0 71 -2,-1.9 2,-0.4 0, 0.0 -2,-0.0 -0.814 1.7 172.7 -96.0 118.5 1.5 19.7 -7.4 5 -2 A S - 0 0 117 -2,-0.6 2,-0.1 2,-0.1 -2,-0.0 -0.955 26.5-123.8-126.4 144.3 1.6 16.2 -9.0 6 -1 A S + 0 0 130 -2,-0.4 2,-0.1 2,-0.1 3,-0.0 -0.297 51.8 106.2 -79.1 166.6 -0.5 13.1 -8.5 7 0 A G - 0 0 46 1,-0.1 3,-0.2 2,-0.1 4,-0.2 -0.422 67.3-109.8 136.0 148.6 0.8 9.7 -7.5 8 1 A Y S S+ 0 0 27 1,-0.2 30,-0.1 -2,-0.1 8,-0.1 -0.216 87.8 98.0 -99.0 42.3 0.9 7.3 -4.5 9 2 A G + 0 0 48 1,-0.1 -1,-0.2 -2,-0.1 -2,-0.1 0.919 68.2 59.7 -91.9 -58.1 4.7 7.8 -4.0 10 3 A A S S+ 0 0 89 -3,-0.2 -2,-0.1 2,-0.1 -1,-0.1 0.810 90.9 97.2 -40.0 -36.4 5.0 10.3 -1.2 11 4 A W S S- 0 0 12 -4,-0.2 2,-0.3 1,-0.1 24,-0.0 0.157 77.2-118.2 -47.0 173.8 3.1 7.8 0.9 12 5 A A > - 0 0 39 1,-0.1 4,-2.3 19,-0.0 5,-0.4 -0.922 20.9-108.3-124.0 149.1 4.9 5.4 3.2 13 6 A A H > S+ 0 0 46 -2,-0.3 4,-2.6 1,-0.3 5,-0.2 0.847 122.8 50.2 -37.2 -46.6 5.2 1.6 3.2 14 7 A Q H > S+ 0 0 147 2,-0.2 4,-2.9 3,-0.2 -1,-0.3 0.956 112.5 45.0 -60.1 -53.3 3.0 1.7 6.3 15 8 A E H > S+ 0 0 64 -3,-0.3 4,-2.2 2,-0.2 -2,-0.2 0.973 115.8 45.1 -55.0 -61.6 0.4 4.0 4.8 16 9 A L H X S+ 0 0 0 -4,-2.3 4,-2.2 1,-0.2 -1,-0.2 0.925 115.0 48.8 -48.6 -52.6 0.2 2.1 1.5 17 10 A Q H X S+ 0 0 63 -4,-2.6 4,-2.5 -5,-0.4 5,-0.3 0.914 108.2 55.6 -55.2 -46.4 0.1 -1.3 3.3 18 11 A A H X S+ 0 0 57 -4,-2.9 4,-2.1 -5,-0.2 -2,-0.2 0.959 109.4 44.5 -51.1 -60.4 -2.6 0.0 5.7 19 12 A K H >X S+ 0 0 44 -4,-2.2 4,-2.1 2,-0.2 3,-0.9 0.959 111.0 53.1 -49.3 -62.9 -5.0 1.0 2.8 20 13 A L H 3X>S+ 0 0 0 -4,-2.2 5,-3.1 1,-0.3 4,-0.5 0.898 114.0 42.2 -38.5 -59.3 -4.5 -2.2 0.9 21 14 A A H 3<5S+ 0 0 55 -4,-2.5 3,-0.5 3,-0.2 -1,-0.3 0.798 108.9 62.6 -61.0 -28.8 -5.3 -4.3 3.9 22 15 A E H <<5S+ 0 0 135 -4,-2.1 -1,-0.2 -3,-0.9 -2,-0.2 0.906 106.1 42.6 -63.6 -43.0 -8.1 -1.9 4.6 23 16 A I H <5S- 0 0 65 -4,-2.1 -1,-0.2 -3,-0.5 -2,-0.2 0.498 129.4 -98.0 -81.5 -3.9 -9.9 -2.8 1.4 24 17 A G T <5S+ 0 0 70 -4,-0.5 -3,-0.2 -3,-0.5 -2,-0.1 0.749 79.1 138.6 92.8 27.7 -9.1 -6.5 2.0 25 18 A A < - 0 0 23 -5,-3.1 -1,-0.3 -6,-0.3 2,-0.3 -0.777 59.3 -99.5-107.2 151.1 -6.0 -6.7 -0.2 26 19 A P - 0 0 74 0, 0.0 -6,-0.0 0, 0.0 -1,-0.0 -0.486 20.6-153.7 -69.8 128.6 -2.7 -8.5 0.5 27 20 A I + 0 0 67 -2,-0.3 2,-0.4 -7,-0.1 7,-0.1 -0.141 52.6 127.8 -94.3 38.1 0.1 -6.2 1.7 28 21 A Q + 0 0 159 5,-0.1 2,-0.2 -11,-0.0 0, 0.0 -0.771 43.5 41.9 -98.2 140.1 2.8 -8.5 0.4 29 22 A G S S- 0 0 52 -2,-0.4 2,-0.1 4,-0.1 -2,-0.0 -0.659 87.9 -49.4 122.4-179.4 5.5 -7.2 -1.9 30 23 A N > - 0 0 132 -2,-0.2 4,-2.3 1,-0.1 5,-0.2 -0.397 60.1 -93.3 -88.4 168.3 7.9 -4.3 -2.2 31 24 A R H > S+ 0 0 158 1,-0.2 4,-2.9 2,-0.2 5,-0.2 0.915 126.7 50.6 -43.8 -55.6 7.0 -0.6 -2.1 32 25 A E H > S+ 0 0 149 1,-0.2 4,-2.9 2,-0.2 5,-0.3 0.942 107.6 52.5 -49.3 -56.8 6.7 -0.5 -5.9 33 26 A E H > S+ 0 0 116 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.897 112.4 46.4 -47.0 -47.7 4.4 -3.5 -6.0 34 27 A L H X S+ 0 0 3 -4,-2.3 4,-2.1 2,-0.2 -1,-0.2 0.950 112.6 49.2 -61.8 -51.3 2.1 -1.8 -3.4 35 28 A V H X S+ 0 0 17 -4,-2.9 4,-2.3 1,-0.2 5,-0.2 0.957 110.8 48.7 -52.9 -57.8 2.1 1.5 -5.2 36 29 A E H X S+ 0 0 110 -4,-2.9 4,-2.6 1,-0.2 -1,-0.2 0.888 108.8 56.7 -50.4 -43.7 1.3 -0.0 -8.6 37 30 A R H X S+ 0 0 93 -4,-2.0 4,-2.9 -5,-0.3 3,-0.3 0.971 106.9 45.4 -52.9 -63.1 -1.5 -2.0 -6.9 38 31 A L H X S+ 0 0 0 -4,-2.1 4,-2.5 1,-0.3 5,-0.3 0.888 113.2 52.5 -48.6 -44.5 -3.3 1.0 -5.5 39 32 A Q H X S+ 0 0 74 -4,-2.3 4,-1.8 -5,-0.2 -1,-0.3 0.904 111.2 46.3 -59.8 -43.3 -2.9 2.8 -8.9 40 33 A S H X S+ 0 0 58 -4,-2.6 4,-2.8 -3,-0.3 -2,-0.2 0.922 112.2 50.9 -66.0 -45.5 -4.5 -0.2 -10.7 41 34 A Y H X>S+ 0 0 66 -4,-2.9 4,-2.7 2,-0.2 5,-0.6 0.976 111.9 44.5 -56.0 -61.6 -7.4 -0.5 -8.2 42 35 A T H X5S+ 0 0 20 -4,-2.5 4,-1.4 1,-0.2 -1,-0.2 0.880 114.6 51.5 -51.3 -42.0 -8.4 3.2 -8.4 43 36 A R H <5S+ 0 0 206 -4,-1.8 -1,-0.2 -5,-0.3 -2,-0.2 0.916 117.9 37.4 -62.8 -44.7 -8.0 3.0 -12.2 44 37 A Q H <5S+ 0 0 162 -4,-2.8 -2,-0.2 -5,-0.1 -3,-0.2 0.993 129.0 30.0 -70.5 -65.9 -10.2 -0.1 -12.4 45 38 A T H <5S- 0 0 75 -4,-2.7 -3,-0.2 -5,-0.2 -2,-0.2 0.947 98.3-135.6 -59.8 -51.4 -12.8 0.7 -9.7 46 39 A G << + 0 0 56 -4,-1.4 2,-0.6 -5,-0.6 -4,-0.2 0.721 59.4 128.8 99.1 26.9 -12.6 4.4 -10.2 47 40 A I - 0 0 98 -6,-0.2 -1,-0.2 -5,-0.1 -2,-0.1 -0.832 48.8-147.2-119.0 93.1 -12.5 5.4 -6.5 48 41 A V - 0 0 102 -2,-0.6 2,-0.2 -6,-0.1 -9,-0.0 -0.237 15.5-141.5 -57.0 142.1 -9.6 7.8 -5.7 49 42 A L - 0 0 18 -11,-0.1 2,-0.4 0, 0.0 -1,-0.1 -0.674 6.5-145.8-106.1 162.0 -8.1 7.3 -2.3 50 43 A N - 0 0 108 -2,-0.2 4,-0.1 1,-0.1 0, 0.0 -0.982 33.2 -87.9-131.0 141.0 -6.8 10.0 0.2 51 44 A R > - 0 0 130 -2,-0.4 3,-0.6 1,-0.1 -1,-0.1 0.005 54.3-102.2 -41.8 145.1 -4.0 9.8 2.7 52 45 A P T 3 S+ 0 0 59 0, 0.0 -1,-0.1 0, 0.0 -37,-0.0 -0.202 98.8 15.5 -69.9 163.5 -5.0 8.4 6.1 53 46 A S T 3 S+ 0 0 125 1,-0.1 3,-0.2 2,-0.1 -2,-0.1 0.853 101.1 115.7 37.0 47.6 -5.7 10.6 9.2 54 47 A G < + 0 0 43 -3,-0.6 2,-1.5 1,-0.2 -1,-0.1 0.694 60.0 35.3-104.1 -94.2 -5.8 13.6 6.8 55 48 A P S S+ 0 0 121 0, 0.0 2,-0.3 0, 0.0 -1,-0.2 -0.500 91.1 110.8 -69.7 90.0 -9.0 15.6 6.4 56 49 A S - 0 0 97 -2,-1.5 2,-0.4 -3,-0.2 0, 0.0 -0.986 47.2-153.3-160.6 153.3 -10.4 15.5 9.9 57 50 A S 0 0 134 -2,-0.3 0, 0.0 1,-0.1 0, 0.0 -0.993 360.0 360.0-135.2 140.7 -11.1 17.7 12.9 58 51 A G 0 0 129 -2,-0.4 -1,-0.1 0, 0.0 0, 0.0 0.314 360.0 360.0 167.5 360.0 -11.3 17.0 16.6