==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 23-DEC-99 1DP3 . COMPND 2 MOLECULE: TRAM PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR T.STOCKNER,C.PLUGARIU,G.KORAIMANN,G.HOEGENAUER,W.BERMEL, . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5313.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 15 27.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 43.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A A 0 0 148 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 109.6 -8.7 -16.6 -8.7 2 3 A K + 0 0 197 5,-0.0 2,-0.8 4,-0.0 3,-0.1 -0.765 360.0 164.7-137.1 93.0 -5.2 -17.8 -9.9 3 4 A V - 0 0 126 -2,-0.4 3,-0.0 1,-0.3 0, 0.0 -0.691 59.8 -85.7-109.1 82.0 -3.9 -16.2 -13.1 4 5 A Q S S+ 0 0 183 -2,-0.8 -1,-0.3 3,-0.0 0, 0.0 -0.001 88.6 103.1 48.0-162.4 -0.2 -17.0 -13.2 5 6 A A S S- 0 0 88 -3,-0.1 -2,-0.1 2,-0.1 3,-0.0 0.687 82.2 -92.5 61.0 124.2 2.1 -14.6 -11.3 6 7 A Y - 0 0 212 1,-0.1 2,-0.8 -4,-0.0 -3,-0.0 -0.329 40.7-110.3 -65.9 149.4 3.3 -15.8 -7.9 7 8 A V + 0 0 129 2,-0.0 2,-0.2 -5,-0.0 -1,-0.1 -0.704 54.8 154.1 -84.7 111.8 1.1 -14.9 -4.9 8 9 A S - 0 0 93 -2,-0.8 2,-2.7 1,-0.0 3,-0.1 -0.551 60.7 -45.1-123.4-169.2 3.0 -12.3 -2.8 9 10 A D > - 0 0 128 1,-0.2 3,-3.8 -2,-0.2 4,-0.2 -0.287 53.4-169.3 -59.9 78.7 2.2 -9.5 -0.4 10 11 A E T >> S+ 0 0 127 -2,-2.7 3,-2.2 1,-0.3 4,-0.6 0.804 76.8 83.3 -43.0 -26.8 -0.6 -8.1 -2.6 11 12 A I H >> + 0 0 49 1,-0.3 4,-2.1 2,-0.2 3,-1.2 0.775 65.5 88.0 -51.9 -21.1 -0.5 -5.1 -0.2 12 13 A V H <> S+ 0 0 66 -3,-3.8 4,-1.9 1,-0.3 -1,-0.3 0.894 86.6 50.3 -46.7 -40.6 2.4 -3.9 -2.4 13 14 A Y H <> S+ 0 0 144 -3,-2.2 4,-1.3 -4,-0.2 -1,-0.3 0.836 107.4 55.2 -69.5 -29.0 -0.2 -2.2 -4.5 14 15 A K H X S+ 0 0 5 -4,-2.1 3,-1.6 1,-0.2 4,-0.9 0.944 112.5 49.7 -47.0 -53.5 3.9 6.9 -1.6 20 21 A E H 3X S+ 0 0 126 -4,-1.8 4,-2.5 1,-0.3 3,-0.4 0.940 101.3 62.5 -53.5 -46.7 2.6 8.3 -4.9 21 22 A R H 3X S+ 0 0 120 -4,-2.2 4,-1.4 1,-0.2 -1,-0.3 0.820 95.4 65.5 -50.3 -27.2 -0.1 10.4 -3.0 22 23 A R H S+ 0 0 102 -3,-1.6 5,-2.5 -4,-1.2 4,-1.2 0.988 111.5 29.4 -61.5 -58.0 2.9 12.1 -1.4 23 24 A R H ><5S+ 0 0 146 -4,-0.9 3,-0.9 -3,-0.4 -2,-0.2 0.958 112.7 63.9 -68.9 -48.2 4.2 13.7 -4.6 24 25 A A H 3<5S+ 0 0 83 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.864 109.8 43.1 -43.8 -34.5 0.7 14.0 -6.2 25 26 A E H 3<5S- 0 0 147 -4,-1.4 -1,-0.3 -5,-0.3 -2,-0.2 0.795 133.0 -93.6 -83.2 -28.1 0.0 16.3 -3.3 26 27 A G T <<5 + 0 0 52 -4,-1.2 -3,-0.3 -3,-0.9 -2,-0.1 0.612 57.9 177.9 121.9 27.5 3.4 18.1 -3.6 27 28 A A < - 0 0 35 -5,-2.5 2,-0.3 -6,-0.2 3,-0.0 0.066 15.5-143.8 -50.5 173.2 5.6 16.2 -1.2 28 29 A K + 0 0 163 1,-0.0 3,-0.4 0, 0.0 4,-0.3 -0.868 52.7 38.5-137.6 172.5 9.2 17.3 -0.9 29 30 A S S > S- 0 0 93 -2,-0.3 3,-0.7 1,-0.2 -1,-0.0 0.426 82.8 -99.8 62.6 146.6 12.7 15.8 -0.4 30 31 A T T 3 S+ 0 0 140 1,-0.2 -1,-0.2 -3,-0.0 -3,-0.0 0.011 96.5 103.8 -89.2 32.4 13.5 12.4 -2.1 31 32 A D T 3 + 0 0 125 -3,-0.4 -1,-0.2 5,-0.0 -2,-0.1 0.746 53.3 97.9 -84.5 -22.6 12.9 10.6 1.2 32 33 A V < + 0 0 14 -3,-0.7 2,-0.3 -4,-0.3 3,-0.1 -0.396 49.1 139.3 -65.9 139.5 9.5 9.2 0.1 33 34 A S > - 0 0 55 1,-0.2 4,-3.2 -2,-0.1 5,-0.5 -0.930 63.5 -99.5-175.7 151.3 9.7 5.7 -1.3 34 35 A F H > S+ 0 0 74 -2,-0.3 4,-2.2 1,-0.2 5,-0.2 0.946 124.7 43.3 -43.4 -66.4 7.7 2.4 -1.2 35 36 A S H > S+ 0 0 75 1,-0.2 4,-2.3 2,-0.2 -1,-0.2 0.897 115.8 52.0 -49.6 -40.1 9.9 0.8 1.5 36 37 A S H > S+ 0 0 50 1,-0.2 4,-1.5 2,-0.2 -2,-0.2 0.987 112.1 41.8 -62.8 -57.7 9.8 4.2 3.3 37 38 A I H X S+ 0 0 6 -4,-3.2 4,-0.8 1,-0.2 -1,-0.2 0.760 113.0 59.5 -62.6 -19.9 6.0 4.5 3.3 38 39 A S H >X S+ 0 0 41 -4,-2.2 4,-2.0 -5,-0.5 3,-0.8 0.968 99.4 52.1 -74.0 -52.7 5.9 0.7 4.1 39 40 A T H 3X S+ 0 0 106 -4,-2.3 4,-1.0 1,-0.3 -2,-0.2 0.943 108.9 51.1 -49.0 -51.4 7.8 0.9 7.4 40 41 A M H 3X S+ 0 0 80 -4,-1.5 4,-0.6 1,-0.2 3,-0.3 0.842 106.9 57.1 -57.9 -29.5 5.5 3.6 8.7 41 42 A L H XX>S+ 0 0 9 -3,-0.8 3,-2.3 -4,-0.8 5,-1.0 0.945 95.5 60.9 -68.5 -46.3 2.5 1.4 7.8 42 43 A L H ><5S+ 0 0 146 -4,-2.0 3,-0.8 1,-0.3 -1,-0.2 0.826 94.2 66.1 -52.2 -27.3 3.7 -1.6 9.9 43 44 A E H 3<5S+ 0 0 171 -4,-1.0 -1,-0.3 -3,-0.3 -2,-0.2 0.870 108.7 38.2 -63.3 -31.0 3.3 0.8 12.9 44 45 A L H X<5S- 0 0 73 -3,-2.3 3,-3.1 -4,-0.6 5,-0.3 0.426 104.6-134.3 -97.0 0.2 -0.4 0.8 12.1 45 46 A G T <<5 - 0 0 47 -3,-0.8 -3,-0.2 -4,-0.7 -2,-0.1 0.909 62.1 -71.5 48.4 42.2 -0.4 -3.0 11.2 46 47 A L T 3 S- 0 0 186 -3,-3.1 3,-3.3 -6,-0.3 4,-0.6 0.658 77.8 -1.8 -74.7-120.7 -5.2 -1.5 10.7 48 49 A V H >> S+ 0 0 98 1,-0.3 3,-1.9 2,-0.2 4,-0.8 0.812 126.7 74.0 -41.2 -27.7 -7.2 1.7 10.5 49 50 A Y H >4 S+ 0 0 18 -5,-0.3 3,-1.0 1,-0.3 4,-0.4 0.902 88.4 57.1 -55.9 -38.8 -4.8 2.5 7.6 50 51 A E H X> S+ 0 0 100 -3,-3.3 3,-0.7 -4,-0.4 4,-0.6 0.687 93.7 70.7 -67.7 -13.5 -6.8 -0.1 5.5 51 52 A A H X< S+ 0 0 54 -3,-1.9 3,-1.2 -4,-0.6 -1,-0.2 0.861 76.3 77.9 -72.1 -32.7 -9.9 2.0 6.2 52 53 A Q T << S+ 0 0 113 -3,-1.0 -1,-0.2 -4,-0.8 -2,-0.2 0.846 99.2 45.2 -45.4 -32.9 -8.6 4.9 3.9 53 54 A M T <4 S+ 0 0 56 -3,-0.7 -1,-0.3 -4,-0.4 -2,-0.2 0.777 90.0 175.0 -83.9 -25.7 -9.7 2.6 1.0 54 55 A E << 0 0 149 -3,-1.2 -2,-0.1 -4,-0.6 -1,-0.0 0.099 360.0 360.0 45.2-170.7 -13.1 1.8 2.6 55 56 A R 0 0 295 -4,-0.0 0, 0.0 0, 0.0 0, 0.0 -0.060 360.0 360.0 -58.4 360.0 -15.5 -0.3 0.5