==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PRESYNAPTIC NEUROTOXIN 02-APR-93 1DTK . COMPND 2 MOLECULE: DENDROTOXIN K; . SOURCE 2 ORGANISM_SCIENTIFIC: DENDROASPIS POLYLEPIS POLYLEPIS; . AUTHOR K.BERNDT,P.GUNTERT,K.WUTHRICH . 57 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4069.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 50.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 17.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 12.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 87 0, 0.0 2,-0.3 0, 0.0 54,-0.1 0.000 360.0 360.0 360.0 142.1 7.5 -6.8 8.7 2 2 A A > - 0 0 30 1,-0.1 3,-1.9 0, 0.0 4,-0.4 -0.963 360.0-108.2-146.9 148.1 6.4 -9.2 5.9 3 3 A K G > S+ 0 0 191 -2,-0.3 3,-1.8 1,-0.3 4,-0.1 0.885 117.6 53.3 -46.7 -51.7 8.1 -10.1 2.6 4 4 A Y G > S+ 0 0 88 1,-0.3 3,-2.5 2,-0.2 -1,-0.3 0.651 85.0 85.0 -64.1 -16.8 5.4 -8.2 0.5 5 5 A a G < S+ 0 0 2 -3,-1.9 20,-0.5 1,-0.3 -1,-0.3 0.773 81.6 65.2 -56.7 -25.4 6.0 -5.0 2.5 6 6 A K G < S+ 0 0 131 -3,-1.8 -1,-0.3 -4,-0.4 -2,-0.2 0.636 74.3 113.8 -67.8 -19.3 8.9 -4.4 0.1 7 7 A L < - 0 0 65 -3,-2.5 18,-0.4 -4,-0.1 16,-0.2 -0.373 66.2-126.6 -62.9 137.2 6.5 -4.0 -2.8 8 8 A P - 0 0 86 0, 0.0 2,-1.9 0, 0.0 35,-0.1 0.136 45.9 -52.3 -78.9-171.0 6.6 -0.4 -4.2 9 9 A L + 0 0 83 1,-0.1 2,-1.2 13,-0.1 3,-0.2 -0.428 64.9 178.7 -66.2 83.8 3.9 2.3 -4.8 10 10 A R + 0 0 120 -2,-1.9 31,-0.2 33,-0.2 -1,-0.1 -0.694 17.9 162.9 -98.6 81.3 1.7 -0.0 -6.8 11 11 A I - 0 0 81 -2,-1.2 25,-2.3 24,-0.1 26,-0.5 0.840 47.3-133.6 -63.0 -33.4 -1.3 2.1 -7.8 12 12 A G - 0 0 15 -3,-0.2 2,-1.3 27,-0.2 27,-0.2 0.347 23.2 -83.8 78.7 143.6 -2.0 -0.5 -10.5 13 13 A P S S+ 0 0 124 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.029 89.1 110.8 -83.8 35.7 -2.9 0.5 -14.1 14 14 A b S S- 0 0 48 -2,-1.3 2,-0.4 24,-0.4 23,-0.1 -0.737 72.0-122.3-108.4 163.4 -6.7 1.1 -13.7 15 15 A K S S+ 0 0 206 -2,-0.3 2,-0.2 21,-0.1 21,-0.0 -0.236 75.9 101.0-106.3 39.6 -8.4 4.4 -13.8 16 16 A R - 0 0 141 -2,-0.4 2,-0.3 22,-0.1 21,-0.1 -0.611 58.0-144.7-115.2 172.9 -10.0 4.4 -10.4 17 17 A K + 0 0 164 19,-0.2 19,-0.2 -2,-0.2 17,-0.1 -0.902 21.3 167.4-150.8 109.9 -9.1 6.0 -7.1 18 18 A I E -A 35 0A 62 17,-2.2 17,-2.9 -2,-0.3 2,-0.2 -0.958 38.9-122.0-127.7 109.0 -9.8 4.2 -3.7 19 19 A P E +A 34 0A 88 0, 0.0 15,-0.3 0, 0.0 2,-0.2 -0.334 51.9 146.5 -62.5 119.0 -8.1 5.7 -0.7 20 20 A S E -A 33 0A 7 13,-2.9 13,-2.5 -2,-0.2 2,-0.3 -0.778 42.2-117.4-137.7-179.4 -5.8 3.1 0.9 21 21 A F E +AB 32 45A 52 24,-2.8 24,-2.6 11,-0.3 2,-0.3 -0.977 27.8 175.4-127.9 139.1 -2.4 2.9 2.8 22 22 A Y E -A 31 0A 9 9,-2.2 9,-3.0 -2,-0.3 2,-0.7 -0.895 33.9-108.4-133.8 166.8 0.8 1.0 1.7 23 23 A Y E -A 30 0A 18 -2,-0.3 2,-1.6 7,-0.3 7,-0.3 -0.873 19.1-150.1-100.5 112.4 4.3 0.7 3.1 24 24 A K E >>> -A 29 0A 82 5,-2.5 4,-3.2 -2,-0.7 3,-2.6 -0.611 14.9-175.9 -77.8 89.6 6.9 2.6 1.2 25 25 A W T 345S+ 0 0 88 -2,-1.6 -1,-0.2 -20,-0.5 -19,-0.1 0.797 81.3 65.5 -56.3 -29.8 9.9 0.3 2.0 26 26 A K T 345S+ 0 0 188 1,-0.2 -1,-0.3 -3,-0.1 -2,-0.1 0.533 118.7 24.4 -71.5 -6.8 12.1 2.8 0.1 27 27 A A T <45S- 0 0 61 -3,-2.6 -2,-0.2 2,-0.2 -1,-0.2 0.623 106.8-124.3-116.1 -40.7 11.3 5.3 2.9 28 28 A K T <5S+ 0 0 105 -4,-3.2 2,-0.3 1,-0.3 -3,-0.2 0.586 71.4 94.5 96.0 30.1 10.4 2.8 5.8 29 29 A Q E S- 0 0 67 -26,-0.1 4,-1.5 1,-0.1 -26,-0.2 -0.916 73.5-134.1-126.3 151.3 -6.0 1.7 7.7 48 48 A I H > S+ 0 0 37 -2,-0.3 4,-3.4 2,-0.2 5,-0.2 0.898 108.6 59.9 -59.5 -42.1 -2.5 3.1 8.6 49 49 A E H > S+ 0 0 106 1,-0.2 4,-3.3 2,-0.2 5,-0.2 0.879 102.1 48.7 -64.9 -38.5 -2.7 0.9 11.7 50 50 A E H > S+ 0 0 95 2,-0.2 4,-2.3 1,-0.2 -1,-0.2 0.949 115.5 45.5 -66.8 -42.2 -3.0 -2.4 9.8 51 51 A c H X S+ 0 0 0 -4,-1.5 4,-3.0 2,-0.2 5,-0.4 0.968 116.5 45.7 -56.4 -53.2 -0.0 -1.4 7.6 52 52 A R H X S+ 0 0 111 -4,-3.4 4,-1.2 1,-0.2 -2,-0.2 0.932 113.4 48.8 -54.8 -50.6 1.8 -0.2 10.7 53 53 A R H < S+ 0 0 182 -4,-3.3 -1,-0.2 1,-0.2 -2,-0.2 0.790 116.0 44.8 -63.9 -34.9 0.9 -3.4 12.7 54 54 A T H < S+ 0 0 23 -4,-2.3 -1,-0.2 -5,-0.2 -2,-0.2 0.943 130.2 18.4 -70.7 -55.0 2.0 -5.6 9.8 55 55 A a H < S+ 0 0 10 -4,-3.0 -3,-0.2 -5,-0.2 -2,-0.2 0.943 124.0 45.3 -95.0 -51.6 5.3 -3.9 8.9 56 56 A V < 0 0 65 -4,-1.2 -27,-0.0 -5,-0.4 -28,-0.0 -0.188 360.0 360.0 -76.4 179.0 6.4 -1.8 11.8 57 57 A G 0 0 120 -2,-0.1 -1,-0.2 0, 0.0 -4,-0.0 0.840 360.0 360.0 72.7 360.0 6.2 -3.4 15.3