==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATION 14-JAN-00 1DU6 . COMPND 2 MOLECULE: HOMEOBOX PROTEIN PBX1; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR T.SPRULES,N.GREEN,M.FEATHERSTONE,K.GEHRING . 64 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5346.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 62.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 28 43.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 4.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 171 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -55.9 9.7 -16.5 -5.8 2 2 A S + 0 0 120 2,-0.0 2,-0.5 1,-0.0 0, 0.0 -0.897 360.0 51.4-128.5 158.1 10.6 -15.6 -9.4 3 3 A G + 0 0 59 -2,-0.3 -1,-0.0 0, 0.0 0, 0.0 -0.747 54.9 174.3 124.5 -85.7 11.3 -12.4 -11.2 4 4 A H + 0 0 144 -2,-0.5 -2,-0.0 2,-0.1 0, 0.0 0.255 47.5 76.5 59.6 166.7 13.7 -10.1 -9.4 5 5 A I + 0 0 167 1,-0.2 2,-0.3 2,-0.0 -1,-0.0 0.994 63.6 129.1 59.9 67.9 15.0 -6.9 -10.9 6 6 A E + 0 0 148 1,-0.1 -1,-0.2 0, 0.0 -2,-0.1 -0.802 17.4 103.2-156.2 108.4 11.9 -4.7 -10.3 7 7 A G + 0 0 65 -2,-0.3 2,-0.3 1,-0.0 3,-0.1 -0.232 29.1 126.9 172.1 90.9 11.9 -1.3 -8.7 8 8 A R - 0 0 199 1,-0.6 -1,-0.0 4,-0.2 4,-0.0 -0.852 67.3 -21.7-158.8 117.3 11.7 2.1 -10.4 9 9 A H S S+ 0 0 153 -2,-0.3 -1,-0.6 1,-0.0 6,-0.2 0.395 97.6 76.7 61.2 153.8 9.2 4.9 -9.8 10 10 A M S >S- 0 0 23 4,-0.1 5,-1.1 -3,-0.1 4,-0.4 0.925 108.1 -79.8 77.9 48.3 5.9 4.5 -8.1 11 11 A N T 5S- 0 0 74 3,-0.2 4,-0.3 2,-0.1 -3,-0.1 0.045 72.5 -55.6 52.9-168.4 7.2 4.2 -4.5 12 12 A K T 5S- 0 0 177 31,-0.1 3,-0.5 1,-0.1 -4,-0.2 0.900 123.6 -7.6 -67.4-100.9 8.7 0.9 -3.3 13 13 A Q T >5S+ 0 0 107 1,-0.2 4,-2.1 2,-0.1 3,-0.3 0.199 104.8 109.8 -84.6 17.4 6.2 -2.0 -3.7 14 14 A A H >>5S+ 0 0 3 -4,-0.4 4,-3.6 1,-0.3 3,-0.5 0.961 77.1 49.0 -55.9 -54.8 3.5 0.4 -4.7 15 15 A T H 3> S+ 0 0 42 -3,-0.3 4,-2.5 2,-0.2 -1,-0.3 0.843 111.1 46.0 -78.7 -33.4 3.3 -4.2 -6.9 17 17 A I H < S+ 0 0 94 -4,-3.3 3,-4.0 -5,-0.3 4,-0.3 0.967 110.8 42.8 -48.2 -76.0 -4.3 -7.6 -12.0 24 24 A S H 3< S+ 0 0 95 -4,-0.7 3,-0.3 1,-0.3 -1,-0.2 0.783 124.5 41.6 -38.2 -36.9 -6.0 -10.0 -9.5 25 25 A H T >< S+ 0 0 99 -4,-1.3 3,-1.1 1,-0.2 -1,-0.3 -0.067 77.2 116.7-106.2 28.8 -9.0 -7.7 -9.9 26 26 A L T < + 0 0 49 -3,-4.0 -1,-0.2 1,-0.2 -2,-0.1 0.725 64.2 72.7 -69.8 -20.8 -8.7 -7.3 -13.7 27 27 A S T 3 S- 0 0 119 -3,-0.3 -1,-0.2 -4,-0.3 -2,-0.1 0.774 128.6 -6.8 -64.0 -25.5 -12.1 -9.0 -14.1 28 28 A N S < S+ 0 0 144 -3,-1.1 -1,-0.2 -6,-0.2 -2,-0.2 -0.221 88.2 137.6-169.5 64.8 -13.6 -5.8 -12.7 29 29 A P + 0 0 22 0, 0.0 3,-0.3 0, 0.0 -3,-0.1 0.930 6.6 140.2 -78.7 -89.8 -11.0 -3.2 -11.4 30 30 A Y - 0 0 139 1,-0.2 2,-0.3 24,-0.1 5,-0.1 0.896 50.8-144.4 42.9 52.9 -11.9 0.4 -12.4 31 31 A P - 0 0 22 0, 0.0 -1,-0.2 0, 0.0 5,-0.2 -0.259 17.0-130.4 -50.2 105.6 -10.8 1.7 -9.0 32 32 A S > - 0 0 88 -2,-0.3 4,-3.1 -3,-0.3 5,-0.3 0.087 33.7 -86.1 -51.3 171.2 -13.3 4.5 -8.3 33 33 A E H > S+ 0 0 142 1,-0.2 4,-2.0 2,-0.2 5,-0.2 0.815 132.8 51.3 -51.7 -31.7 -12.0 7.9 -7.2 34 34 A E H > S+ 0 0 154 2,-0.2 4,-2.9 3,-0.2 -1,-0.2 0.963 111.7 42.5 -71.2 -54.5 -12.1 6.5 -3.7 35 35 A A H > S+ 0 0 26 2,-0.2 4,-2.9 1,-0.2 5,-0.3 0.918 116.7 49.1 -58.8 -46.0 -10.1 3.3 -4.3 36 36 A K H X S+ 0 0 35 -4,-3.1 4,-2.9 2,-0.2 -2,-0.2 0.971 114.7 43.0 -58.5 -56.5 -7.6 5.2 -6.5 37 37 A E H X S+ 0 0 93 -4,-2.0 4,-3.7 -5,-0.3 5,-0.3 0.891 113.4 55.8 -56.5 -40.6 -7.0 8.0 -4.0 38 38 A E H X S+ 0 0 125 -4,-2.9 4,-1.6 2,-0.2 -2,-0.2 0.978 111.3 39.8 -56.0 -62.1 -6.9 5.3 -1.3 39 39 A L H X S+ 0 0 29 -4,-2.9 4,-1.4 2,-0.2 6,-0.2 0.904 117.4 52.7 -54.6 -43.1 -4.1 3.3 -2.8 40 40 A A H >X>S+ 0 0 0 -4,-2.9 5,-2.0 -5,-0.3 4,-0.8 0.965 117.3 34.7 -57.4 -57.2 -2.4 6.5 -3.8 41 41 A K H 3<5S+ 0 0 137 -4,-3.7 -1,-0.2 1,-0.2 -2,-0.2 0.557 108.6 70.9 -75.8 -7.7 -2.5 8.0 -0.3 42 42 A K H 3<5S+ 0 0 108 -4,-1.6 -1,-0.2 -5,-0.3 -2,-0.2 0.843 107.6 34.0 -76.6 -33.2 -2.0 4.4 1.1 43 43 A C H <<5S- 0 0 31 -4,-1.4 -2,-0.2 -3,-0.6 -1,-0.2 0.592 112.5-118.8 -93.1 -16.1 1.6 4.4 -0.1 44 44 A G T <5S+ 0 0 56 -4,-0.8 -3,-0.2 -5,-0.2 -4,-0.1 0.776 79.1 113.1 81.6 27.0 2.0 8.1 0.5 45 45 A I S > - 0 0 75 1,-0.1 3,-2.4 -6,-0.0 4,-1.1 -0.921 25.3-120.5-163.7 133.6 0.4 10.8 -5.4 47 47 A V H 3> S+ 0 0 35 -2,-0.3 4,-7.2 1,-0.3 5,-0.4 0.827 111.5 65.9 -48.6 -37.2 -2.7 9.8 -7.2 48 48 A S H 3> S+ 0 0 83 1,-0.3 4,-2.9 2,-0.3 5,-0.5 0.875 98.0 55.9 -56.7 -29.6 -1.2 10.6 -10.5 49 49 A Q H <> S+ 0 0 58 -3,-2.4 4,-1.2 2,-0.2 -1,-0.3 0.925 124.1 25.4 -63.6 -39.5 1.1 7.7 -9.7 50 50 A V H X>S+ 0 0 0 -4,-1.1 4,-2.2 -3,-0.4 5,-0.5 0.940 120.1 57.7 -83.3 -59.0 -2.2 5.8 -9.3 51 51 A S H X5S+ 0 0 59 -4,-7.2 4,-0.7 1,-0.2 -3,-0.2 0.836 117.3 36.0 -37.5 -48.4 -4.3 8.0 -11.7 52 52 A N H X5S+ 0 0 87 -4,-2.9 4,-1.5 -5,-0.4 5,-0.3 0.908 110.1 61.2 -76.5 -46.5 -1.8 7.3 -14.5 53 53 A W H >X5S+ 0 0 19 -4,-1.2 4,-1.3 -5,-0.5 3,-0.5 0.914 114.0 35.3 -46.6 -54.1 -1.0 3.6 -13.6 54 54 A F H 3X5S+ 0 0 17 -4,-2.2 4,-2.6 1,-0.2 -1,-0.3 0.757 106.3 71.1 -75.0 -24.3 -4.6 2.5 -14.0 55 55 A G H 3<X S+ 0 0 43 -4,-1.3 3,-1.5 -5,-0.3 4,-0.8 0.791 95.9 63.1 -75.5 -25.9 -3.9 -0.5 -17.3 58 58 A R T 3< S+ 0 0 126 -4,-2.6 -1,-0.3 1,-0.3 -2,-0.1 0.490 82.2 84.3 -74.8 -0.5 -7.4 0.3 -18.3 59 59 A I T <4 S- 0 0 111 -3,-1.0 -1,-0.3 -5,-0.1 -2,-0.2 0.525 114.9-106.2 -75.9 -8.3 -6.0 -0.1 -21.8 60 60 A R T <4 - 0 0 133 -3,-1.5 4,-0.5 4,-0.1 -2,-0.2 0.977 29.3-154.9 75.8 76.7 -6.5 -3.8 -21.4 61 61 A Y S < S+ 0 0 64 -4,-0.8 -1,-0.1 3,-0.1 -3,-0.1 0.346 72.7 84.8 -62.6 8.2 -3.0 -5.2 -20.9 62 62 A K S S- 0 0 123 1,-0.1 2,-2.2 0, 0.0 -3,-0.0 0.302 111.1 -35.0 -86.9-143.0 -4.4 -8.5 -22.2 63 63 A K 0 0 193 1,-0.2 -2,-0.1 0, 0.0 -1,-0.1 -0.323 360.0 360.0 -79.1 57.2 -4.7 -9.5 -25.9 64 64 A N 0 0 189 -2,-2.2 -1,-0.2 -4,-0.5 -4,-0.1 0.966 360.0 360.0 60.7 360.0 -5.5 -5.9 -27.0