==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER INTEGRASE 25-MAR-00 1E0E . COMPND 2 MOLECULE: HUMAN IMMUNODEFICIENCY VIRUS TYPE 2 INTEGRASE; . SOURCE 2 ORGANISM_SCIENTIFIC: HUMAN IMMUNODEFICIENCY VIRUS TYPE 2 . AUTHOR A.P.A.M.EIJKELENBOOM,F.M.I.VAN DEN ENT,R.H.A.PLASTERK, . 92 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7501.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 60.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 48 52.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A F > 0 0 85 0, 0.0 4,-0.9 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 -46.7 -3.0 -10.6 -9.0 2 2 A L T 4 + 0 0 98 3,-0.2 4,-0.1 1,-0.2 0, 0.0 0.211 360.0 82.0 -88.2 15.5 -4.9 -9.1 -11.9 3 3 A E T 4 S+ 0 0 168 3,-0.1 -1,-0.2 2,-0.1 0, 0.0 0.961 109.5 11.8 -82.1 -61.7 -7.0 -12.2 -12.4 4 4 A K T > S+ 0 0 173 2,-0.2 4,-0.7 1,-0.1 -2,-0.1 0.704 127.6 59.3 -89.1 -23.6 -9.7 -11.8 -9.7 5 5 A I H X S+ 0 0 15 -4,-0.9 4,-1.1 2,-0.2 3,-0.4 0.863 98.3 59.3 -73.2 -36.6 -8.9 -8.2 -9.0 6 6 A E H >> S+ 0 0 112 1,-0.2 3,-1.9 2,-0.2 4,-1.3 0.972 99.5 54.4 -56.5 -59.2 -9.6 -7.1 -12.6 7 7 A P H 3> S+ 0 0 59 0, 0.0 4,-1.0 0, 0.0 -1,-0.2 0.794 106.1 56.0 -45.2 -32.3 -13.2 -8.3 -12.7 8 8 A A H 3X S+ 0 0 0 -4,-0.7 4,-1.6 -3,-0.4 -2,-0.2 0.833 99.2 58.6 -71.5 -33.2 -13.7 -6.1 -9.6 9 9 A Q H X S+ 0 0 38 -4,-1.0 4,-1.2 1,-0.2 3,-0.9 0.901 105.1 47.5 -66.5 -41.8 -17.8 -3.8 -11.3 12 12 A H H 3X S+ 0 0 4 -4,-1.6 4,-3.0 1,-0.2 3,-0.4 0.898 105.8 58.7 -66.2 -40.6 -17.1 -0.4 -9.8 13 13 A E H 3< S+ 0 0 167 -4,-1.3 -1,-0.2 1,-0.2 -2,-0.2 0.615 111.0 43.8 -64.3 -12.2 -17.2 1.2 -13.3 14 14 A K H <4 S+ 0 0 137 -3,-0.9 -1,-0.2 -4,-0.4 -2,-0.2 0.642 137.1 6.2-106.8 -20.6 -20.8 -0.1 -13.6 15 15 A Y H < S- 0 0 153 -4,-1.2 -2,-0.2 -3,-0.4 -3,-0.2 0.200 89.7-118.7-148.0 17.6 -22.2 0.8 -10.2 16 16 A H < - 0 0 90 -4,-3.0 -4,-0.2 1,-0.2 -3,-0.1 0.834 44.4-165.6 41.3 42.3 -19.5 2.8 -8.4 17 17 A S - 0 0 14 -6,-0.4 -1,-0.2 1,-0.1 -2,-0.1 -0.296 13.8-121.9 -58.9 136.8 -19.5 0.0 -5.7 18 18 A N > - 0 0 112 -3,-0.1 4,-2.6 1,-0.1 5,-0.2 -0.150 30.1 -94.7 -73.4 173.3 -17.7 1.0 -2.5 19 19 A V H > S+ 0 0 33 1,-0.2 4,-3.4 2,-0.2 5,-0.3 0.938 126.7 51.3 -54.8 -51.7 -14.7 -0.9 -1.1 20 20 A K H > S+ 0 0 133 1,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.850 111.2 50.4 -55.4 -35.3 -16.8 -3.0 1.2 21 21 A E H > S+ 0 0 93 2,-0.2 4,-2.6 3,-0.2 5,-0.3 0.941 113.4 42.9 -68.9 -48.7 -19.0 -3.9 -1.8 22 22 A L H X>S+ 0 0 0 -4,-2.6 4,-2.4 2,-0.2 5,-1.0 0.902 121.1 42.0 -63.7 -42.9 -16.0 -4.9 -4.0 23 23 A S H <5S+ 0 0 19 -4,-3.4 -2,-0.2 -5,-0.2 -1,-0.2 0.891 120.1 42.1 -71.7 -42.0 -14.4 -6.8 -1.1 24 24 A H H <5S+ 0 0 141 -4,-2.7 -2,-0.2 -5,-0.3 -3,-0.2 0.786 119.5 45.3 -76.0 -28.5 -17.6 -8.3 0.1 25 25 A K H <5S+ 0 0 111 -4,-2.6 -2,-0.2 -5,-0.2 -3,-0.2 0.922 134.3 12.8 -80.3 -48.0 -18.8 -9.1 -3.4 26 26 A F T <5S- 0 0 78 -4,-2.4 -3,-0.2 -5,-0.3 -2,-0.1 0.892 99.7-116.6 -94.3 -54.5 -15.5 -10.5 -4.8 27 27 A G < + 0 0 55 -5,-1.0 -4,-0.2 1,-0.3 -3,-0.1 0.207 60.7 141.0 134.8 -14.5 -13.4 -11.1 -1.7 28 28 A I - 0 0 18 -6,-0.5 -1,-0.3 -24,-0.1 -2,-0.1 -0.262 60.0 -96.4 -58.3 142.3 -10.4 -8.8 -2.2 29 29 A P > - 0 0 44 0, 0.0 4,-1.8 0, 0.0 5,-0.2 0.036 38.0 -98.4 -53.8 168.6 -9.2 -7.0 1.0 30 30 A N H > S+ 0 0 102 1,-0.2 4,-1.5 2,-0.2 -7,-0.1 0.719 123.6 52.3 -63.9 -21.7 -10.4 -3.5 1.9 31 31 A L H > S+ 0 0 68 2,-0.2 4,-1.8 3,-0.1 -1,-0.2 0.945 107.7 46.4 -80.3 -52.1 -7.2 -2.1 0.5 32 32 A V H > S+ 0 0 2 1,-0.2 4,-0.6 2,-0.2 -2,-0.2 0.829 116.9 48.3 -59.2 -30.6 -7.2 -3.8 -2.9 33 33 A A H >X S+ 0 0 0 -4,-1.8 4,-1.5 1,-0.2 3,-1.0 0.899 106.1 54.7 -75.7 -42.7 -10.9 -2.7 -3.2 34 34 A R H 3X S+ 0 0 135 -4,-1.5 4,-3.5 1,-0.3 5,-0.2 0.805 98.3 65.5 -61.0 -28.8 -10.2 0.9 -2.2 35 35 A Q H 3X S+ 0 0 38 -4,-1.8 4,-1.3 1,-0.2 -1,-0.3 0.856 101.2 49.9 -61.6 -34.4 -7.6 1.0 -5.0 36 36 A I H S+ 0 0 61 -2,-0.3 4,-1.9 2,-0.2 -1,-0.2 0.929 90.0 54.4 -70.3 -47.3 -12.3 10.1 -10.7 42 42 A Q H 4 S+ 0 0 162 1,-0.2 -1,-0.2 2,-0.2 -2,-0.1 0.789 119.0 36.7 -57.6 -28.4 -16.0 10.7 -10.1 43 43 A C H 4 S+ 0 0 44 -6,-0.2 -1,-0.2 1,-0.1 -2,-0.2 0.736 106.2 67.9 -94.9 -28.4 -15.5 9.0 -6.7 44 44 A Q H < S+ 0 0 107 -4,-2.0 2,-0.3 -7,-0.1 -2,-0.2 0.930 91.2 69.1 -56.6 -49.1 -12.1 10.5 -6.0 45 45 A Q < 0 0 161 -4,-1.9 -5,-0.0 -5,-0.1 0, 0.0 -0.557 360.0 360.0 -76.4 133.6 -13.5 14.0 -5.7 46 46 A K 0 0 269 -2,-0.3 -2,-0.0 0, 0.0 -1,-0.0 -0.522 360.0 360.0-101.0 360.0 -15.6 14.7 -2.6 47 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 48 1 B F > 0 0 84 0, 0.0 4,-0.9 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 -46.7 -2.6 -10.6 1.2 49 2 B L T 4 + 0 0 97 3,-0.2 4,-0.1 1,-0.2 0, 0.0 0.212 360.0 82.0 -88.3 15.5 -0.7 -9.0 4.1 50 3 B E T 4 S+ 0 0 168 3,-0.1 -1,-0.2 2,-0.1 0, 0.0 0.961 109.5 11.9 -82.1 -61.7 1.4 -12.2 4.5 51 4 B K T > S+ 0 0 172 2,-0.2 4,-0.7 1,-0.1 -2,-0.1 0.706 127.6 59.3 -89.0 -23.6 4.1 -11.8 1.9 52 5 B I H X S+ 0 0 15 -4,-0.9 4,-1.1 2,-0.2 3,-0.4 0.862 98.3 59.3 -73.2 -36.7 3.3 -8.2 1.1 53 6 B E H >> S+ 0 0 113 1,-0.2 3,-1.9 2,-0.2 4,-1.3 0.971 99.5 54.4 -56.3 -59.3 4.0 -7.1 4.7 54 7 B P H 3> S+ 0 0 58 0, 0.0 4,-1.0 0, 0.0 -1,-0.2 0.794 106.2 56.0 -45.1 -32.3 7.7 -8.3 4.8 55 8 B A H 3X S+ 0 0 0 -4,-0.7 4,-1.6 -3,-0.4 -2,-0.2 0.833 99.3 58.6 -71.5 -33.1 8.2 -6.2 1.7 56 9 B Q H X S+ 0 0 37 -4,-1.0 4,-1.2 1,-0.2 3,-0.9 0.903 105.2 47.5 -66.6 -41.8 12.3 -3.9 3.4 59 12 B H H 3X S+ 0 0 4 -4,-1.6 4,-2.9 1,-0.2 3,-0.4 0.897 105.8 58.7 -66.2 -40.6 11.6 -0.4 1.9 60 13 B E H 3< S+ 0 0 167 -4,-1.3 -1,-0.2 1,-0.2 -2,-0.2 0.613 111.0 43.7 -64.3 -12.3 11.7 1.1 5.4 61 14 B K H <4 S+ 0 0 137 -3,-0.9 -1,-0.2 -4,-0.4 -2,-0.2 0.640 137.0 6.2-106.8 -20.6 15.3 -0.1 5.7 62 15 B Y H < S- 0 0 154 -4,-1.2 -2,-0.2 -3,-0.4 -3,-0.2 0.200 89.8-118.7-148.1 17.7 16.7 0.7 2.3 63 16 B H < - 0 0 89 -4,-2.9 -4,-0.2 1,-0.2 -3,-0.1 0.836 44.4-165.6 41.3 42.3 14.0 2.7 0.5 64 17 B S - 0 0 14 -6,-0.4 -1,-0.2 1,-0.1 -2,-0.1 -0.296 13.8-122.0 -58.8 136.7 14.0 -0.1 -2.2 65 18 B N > - 0 0 112 -3,-0.1 4,-2.6 1,-0.1 5,-0.2 -0.149 30.1 -94.7 -73.4 173.3 12.2 0.9 -5.4 66 19 B V H > S+ 0 0 33 1,-0.2 4,-3.4 2,-0.2 5,-0.3 0.937 126.7 51.4 -54.8 -51.7 9.2 -1.0 -6.8 67 20 B K H > S+ 0 0 132 1,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.850 111.2 50.3 -55.2 -35.4 11.3 -3.1 -9.1 68 21 B E H > S+ 0 0 93 2,-0.2 4,-2.6 -3,-0.2 5,-0.3 0.941 113.5 42.9 -68.9 -48.5 13.4 -4.0 -6.1 69 22 B L H X>S+ 0 0 0 -4,-2.6 4,-2.4 2,-0.2 5,-1.0 0.903 121.1 42.0 -63.8 -42.9 10.5 -5.0 -3.9 70 23 B S H <5S+ 0 0 18 -4,-3.4 -2,-0.2 -5,-0.2 -1,-0.2 0.892 120.2 42.1 -71.7 -41.9 8.9 -6.9 -6.8 71 24 B H H <5S+ 0 0 143 -4,-2.7 -2,-0.2 -5,-0.3 -3,-0.2 0.785 119.5 45.2 -76.1 -28.5 12.1 -8.5 -8.0 72 25 B K H <5S+ 0 0 112 -4,-2.6 -2,-0.2 -5,-0.2 -3,-0.2 0.921 134.3 12.8 -80.2 -48.1 13.2 -9.2 -4.4 73 26 B F T <5S- 0 0 80 -4,-2.4 -3,-0.2 -5,-0.3 -2,-0.1 0.891 99.7-116.7 -94.2 -54.6 10.0 -10.6 -3.1 74 27 B G < + 0 0 55 -5,-1.0 -4,-0.2 1,-0.3 -3,-0.1 0.208 60.7 141.0 134.8 -14.6 7.8 -11.2 -6.2 75 28 B I - 0 0 18 -6,-0.5 -1,-0.3 -24,-0.1 -2,-0.1 -0.266 60.0 -96.4 -58.3 142.3 4.9 -8.8 -5.7 76 29 B P > - 0 0 45 0, 0.0 4,-1.8 0, 0.0 5,-0.2 0.037 38.0 -98.4 -53.9 168.6 3.7 -7.1 -8.9 77 30 B N H > S+ 0 0 101 1,-0.2 4,-1.5 2,-0.2 -7,-0.1 0.719 123.5 52.3 -64.0 -21.5 4.9 -3.6 -9.8 78 31 B L H > S+ 0 0 67 2,-0.2 4,-1.8 3,-0.1 -1,-0.2 0.945 107.7 46.4 -80.4 -52.1 1.7 -2.2 -8.4 79 32 B V H > S+ 0 0 2 1,-0.2 4,-0.6 2,-0.2 -2,-0.2 0.829 116.9 48.2 -59.2 -30.6 1.7 -3.9 -5.0 80 33 B A H >X S+ 0 0 0 -4,-1.8 4,-1.5 2,-0.2 3,-1.1 0.899 106.1 54.8 -75.7 -42.6 5.4 -2.8 -4.7 81 34 B R H 3X S+ 0 0 135 -4,-1.5 4,-3.5 1,-0.3 5,-0.2 0.806 98.3 65.5 -61.0 -28.7 4.7 0.8 -5.7 82 35 B Q H 3X S+ 0 0 36 -4,-1.8 4,-1.3 1,-0.2 -1,-0.3 0.856 101.2 49.9 -61.7 -34.4 2.1 1.0 -2.9 83 36 B I H S+ 0 0 60 -2,-0.3 4,-1.9 2,-0.2 -1,-0.2 0.929 90.0 54.4 -70.3 -47.3 6.8 10.1 2.7 89 42 B Q H 4 S+ 0 0 162 1,-0.2 -1,-0.2 2,-0.2 -2,-0.1 0.789 119.0 36.7 -57.6 -28.4 10.5 10.6 2.1 90 43 B C H 4 S+ 0 0 44 -6,-0.2 -1,-0.2 1,-0.1 -2,-0.2 0.736 106.2 67.9 -94.8 -28.4 10.1 9.0 -1.3 91 44 B Q H < S+ 0 0 106 -4,-2.0 2,-0.3 -7,-0.1 -2,-0.2 0.929 91.3 69.1 -56.7 -49.0 6.6 10.4 -2.0 92 45 B Q < 0 0 161 -4,-1.9 -5,-0.0 -5,-0.1 0, 0.0 -0.557 360.0 360.0 -76.4 133.6 8.0 14.0 -2.3 93 46 B K 0 0 270 -2,-0.3 -2,-0.0 0, 0.0 -1,-0.0 -0.522 360.0 360.0-100.9 360.0 10.2 14.6 -5.4