==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER BACTERIOCIN 28-MAR-00 1E0H . COMPND 2 MOLECULE: IMMUNITY PROTEIN FOR COLICIN E9; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR R.BOETZEL,M.CZISCH,R.KAPTEIN,A.M.HEMMINGS,R.JAMES, . 86 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5028.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 52 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 2.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 14.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 34.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 80 0, 0.0 2,-0.2 0, 0.0 26,-0.0 0.000 360.0 360.0 360.0 124.2 -7.6 3.6 11.5 2 2 A E + 0 0 132 1,-0.2 0, 0.0 16,-0.0 0, 0.0 -0.442 360.0 164.3 -92.5 171.6 -4.1 2.4 11.8 3 3 A L - 0 0 48 -2,-0.2 2,-0.3 3,-0.0 -1,-0.2 0.268 29.3-144.0-140.8 -77.3 -1.3 3.6 9.6 4 4 A K - 0 0 51 1,-0.0 3,-0.1 4,-0.0 39,-0.0 -0.720 16.9-115.5 108.0-175.7 2.1 2.7 10.9 5 5 A H S S+ 0 0 141 1,-0.8 2,-0.3 -2,-0.3 -1,-0.0 0.444 95.7 22.6-132.8 -24.6 5.3 4.6 10.9 6 6 A S S > S- 0 0 30 38,-0.0 -1,-0.8 -3,-0.0 3,-0.6 -0.934 77.1-118.3-128.4 162.8 7.2 2.4 8.8 7 7 A I G > S+ 0 0 21 36,-0.6 3,-0.6 -2,-0.3 77,-0.4 0.672 116.7 62.9 -54.3 -23.4 6.3 -0.2 6.2 8 8 A S G 3 S+ 0 0 61 1,-0.3 -1,-0.2 75,-0.2 75,-0.1 0.616 81.6 67.4-103.4 -18.5 8.1 -2.3 8.7 9 9 A D G < S+ 0 0 53 -3,-0.6 2,-0.3 75,-0.1 -1,-0.3 0.395 108.2 57.8 -72.4 4.9 6.0 -1.9 11.7 10 10 A Y S < S- 0 0 2 -3,-0.6 74,-2.5 72,-0.2 2,-0.1 -0.932 76.6-133.2-138.8 157.9 3.5 -3.9 9.4 11 11 A T B > -a 84 0A 17 -2,-0.3 4,-2.6 72,-0.3 74,-0.2 -0.406 36.7-100.3 -92.9 177.8 3.4 -7.2 7.5 12 12 A E H > S+ 0 0 58 72,-0.6 4,-1.4 2,-0.2 73,-0.1 0.717 126.8 51.1 -73.7 -18.1 2.3 -7.9 3.9 13 13 A A H > S+ 0 0 70 72,-0.3 4,-2.5 2,-0.2 -1,-0.2 0.887 111.5 49.0 -77.7 -38.7 -1.1 -9.0 5.1 14 14 A E H > S+ 0 0 56 1,-0.2 4,-1.6 2,-0.2 -2,-0.2 0.910 115.1 43.7 -57.6 -47.4 -1.2 -5.8 7.0 15 15 A F H X S+ 0 0 0 -4,-2.6 4,-2.9 2,-0.2 5,-0.2 0.846 111.6 53.4 -67.4 -38.8 -0.2 -3.9 3.9 16 16 A L H X S+ 0 0 46 -4,-1.4 4,-2.1 1,-0.2 -2,-0.2 0.919 112.4 44.2 -68.4 -35.6 -2.5 -5.8 1.8 17 17 A Q H X S+ 0 0 121 -4,-2.5 4,-1.9 2,-0.2 -1,-0.2 0.818 110.0 56.2 -68.5 -36.0 -5.3 -4.9 4.1 18 18 A L H >X S+ 0 0 14 -4,-1.6 4,-1.2 2,-0.2 3,-0.7 0.982 110.8 43.7 -64.8 -49.3 -4.0 -1.3 4.2 19 19 A V H >X S+ 0 0 0 -4,-2.9 4,-3.1 1,-0.3 3,-1.0 0.929 113.5 52.8 -55.1 -47.3 -4.3 -1.2 0.4 20 20 A T H 3< S+ 0 0 65 -4,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.742 102.2 57.9 -70.2 -23.0 -7.7 -2.9 0.9 21 21 A T H S+ 0 0 6 -4,-1.9 5,-1.5 -3,-0.7 4,-1.2 0.762 112.2 42.4 -67.5 -30.8 -8.8 -0.2 3.4 22 22 A I H <<5S+ 0 0 7 -4,-1.2 3,-0.4 -3,-1.0 -2,-0.2 0.931 113.2 48.5 -86.0 -49.4 -8.2 2.3 0.6 23 23 A C T <5S+ 0 0 57 -4,-3.1 -1,-0.2 1,-0.2 -2,-0.2 0.535 120.9 43.3 -59.9 -7.2 -9.8 0.1 -2.0 24 24 A N T 45S- 0 0 101 -5,-0.3 -2,-0.3 9,-0.0 -1,-0.2 0.634 94.7-138.3-110.0 -17.7 -12.5 0.1 0.8 25 25 A A T <5 + 0 0 45 -4,-1.2 2,-0.5 -3,-0.4 -3,-0.2 0.756 43.9 162.6 54.3 32.9 -12.7 3.8 2.0 26 26 A D < + 0 0 79 -5,-1.5 -1,-0.1 -6,-0.1 -4,-0.1 0.100 46.9 77.9 -57.7 8.5 -12.8 2.0 5.4 27 27 A T S S- 0 0 16 -2,-0.5 -5,-0.0 -6,-0.2 0, 0.0 -0.243 111.8 -50.4-115.1-172.3 -11.9 5.4 6.8 28 28 A S S S- 0 0 62 1,-0.1 -2,-0.1 -2,-0.1 -3,-0.0 0.616 93.0-108.3 -44.9 -22.4 -12.9 8.9 7.9 29 29 A S S S+ 0 0 84 1,-0.1 -1,-0.1 -4,-0.1 -3,-0.0 0.099 92.3 10.6 110.3 -3.5 -14.2 8.6 4.3 30 30 A E S > S+ 0 0 159 0, 0.0 4,-1.2 0, 0.0 -1,-0.1 0.273 125.8 50.0-153.8 -4.3 -12.2 10.7 2.0 31 31 A E H > S+ 0 0 100 2,-0.3 4,-2.2 3,-0.2 5,-0.1 0.934 104.2 46.5-111.4 -63.8 -9.2 11.7 4.1 32 32 A E H > S+ 0 0 40 2,-0.2 4,-2.7 1,-0.2 5,-0.2 0.839 113.7 62.1 -45.8 -37.3 -7.7 8.8 5.8 33 33 A L H > S+ 0 0 18 2,-0.2 4,-2.8 1,-0.2 3,-0.4 0.970 105.5 39.5 -57.4 -62.3 -8.1 7.6 2.2 34 34 A V H X S+ 0 0 97 -4,-1.2 4,-2.0 1,-0.2 -1,-0.2 0.779 120.4 49.9 -55.0 -28.4 -5.9 10.3 0.6 35 35 A K H X S+ 0 0 64 -4,-2.2 4,-2.7 2,-0.2 -2,-0.2 0.820 109.7 46.8 -84.6 -34.4 -3.6 9.7 3.7 36 36 A L H X S+ 0 0 0 -4,-2.7 4,-1.6 -3,-0.4 -2,-0.2 0.804 111.1 55.7 -75.2 -32.3 -3.5 5.9 3.4 37 37 A V H >X S+ 0 0 27 -4,-2.8 4,-2.0 -5,-0.2 3,-0.8 0.986 113.1 39.9 -56.3 -56.7 -2.8 6.6 -0.3 38 38 A T H 3X S+ 0 0 76 -4,-2.0 4,-2.5 1,-0.3 -2,-0.2 0.855 108.4 60.2 -69.5 -38.5 0.1 8.7 0.8 39 39 A H H 3X S+ 0 0 20 -4,-2.7 4,-2.5 2,-0.2 -1,-0.3 0.848 108.0 47.4 -55.7 -33.0 1.1 6.3 3.5 40 40 A F H < S+ 0 0 131 -4,-2.5 3,-1.2 -5,-0.2 -1,-0.2 0.938 111.9 54.4 -77.8 -56.5 5.6 6.9 1.7 43 43 A M H 3< S+ 0 0 13 -4,-2.5 -36,-0.6 1,-0.3 -2,-0.2 0.788 107.3 39.7 -60.8 -50.7 6.0 3.5 3.1 44 44 A T T 3< S- 0 0 1 -4,-1.7 -1,-0.3 -5,-0.1 -2,-0.1 0.346 91.3-128.2 -91.7 4.1 7.4 1.2 0.4 45 45 A E < + 0 0 131 -3,-1.2 -2,-0.1 1,-0.2 -3,-0.1 0.803 56.3 170.3 52.5 25.5 9.9 3.7 -1.1 46 46 A H > - 0 0 15 -6,-0.4 3,-1.0 -5,-0.2 -1,-0.2 -0.622 41.7-137.3 -87.7 132.3 8.0 2.6 -4.2 47 47 A P T 3 S+ 0 0 80 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.774 94.9 40.9 -30.3 -61.4 8.4 4.2 -7.7 48 48 A S T > + 0 0 47 1,-0.2 3,-2.6 3,-0.1 4,-0.2 -0.215 61.8 150.6-109.0 31.8 4.7 4.3 -8.8 49 49 A G G X S+ 0 0 8 -3,-1.0 3,-1.3 1,-0.3 -1,-0.2 0.830 84.6 36.1 -18.6 -69.7 2.6 5.4 -5.7 50 50 A S G 3 >S+ 0 0 74 1,-0.3 5,-0.6 2,-0.1 4,-0.4 0.507 123.6 49.3 -69.0 -3.0 -0.2 7.2 -7.7 51 51 A D G < 5S+ 0 0 69 -3,-2.6 -1,-0.3 4,-0.1 -2,-0.3 0.041 104.0 53.1-140.9 8.6 0.2 4.5 -10.3 52 52 A L T < 5S+ 0 0 0 -3,-1.3 19,-0.2 -4,-0.2 18,-0.1 -0.134 107.2 55.2-129.1 38.4 0.1 1.3 -8.3 53 53 A I T 5S- 0 0 5 -3,-0.2 -2,-0.1 -5,-0.1 -3,-0.1 0.584 128.7 -27.0-133.1 -37.7 -3.1 2.2 -6.6 54 54 A Y T 5S+ 0 0 116 -4,-0.4 -3,-0.1 13,-0.1 8,-0.1 0.495 122.5 63.1-148.9 -40.9 -5.8 2.9 -9.3 55 55 A Y S S- 0 0 45 1,-0.2 4,-2.8 4,-0.0 5,-0.5 -0.342 78.2 -93.4 -52.4 154.1 -6.4 -5.5 -8.0 64 64 A P T 4 S+ 0 0 55 0, 0.0 -44,-0.2 0, 0.0 -1,-0.2 0.569 133.6 34.1 -53.1 -11.3 -6.5 -4.7 -4.2 65 65 A S T >> S+ 0 0 56 3,-0.1 4,-3.1 -46,-0.1 3,-0.6 0.767 110.9 58.9 -92.1 -60.3 -3.9 -7.5 -4.1 66 66 A G H 3> S+ 0 0 1 1,-0.3 4,-1.0 2,-0.2 -4,-0.2 0.834 105.7 53.1 -43.3 -41.1 -2.1 -7.0 -7.5 67 67 A I H 3X S+ 0 0 0 -4,-2.8 4,-1.6 2,-0.3 -1,-0.3 0.892 110.6 43.7 -66.1 -38.1 -1.2 -3.5 -6.4 68 68 A V H <> S+ 0 0 0 -3,-0.6 4,-2.0 -5,-0.5 -2,-0.2 0.906 113.6 55.6 -70.0 -35.5 0.3 -4.7 -3.2 69 69 A N H < S+ 0 0 64 -4,-3.1 -2,-0.3 -6,-0.3 -1,-0.3 0.743 96.6 62.4 -56.3 -29.0 1.7 -7.3 -5.5 70 70 A T H >X S+ 0 0 32 -4,-1.0 4,-2.5 1,-0.3 3,-1.2 0.947 108.5 42.0 -75.9 -38.3 3.2 -4.5 -7.6 71 71 A V H 3X S+ 0 0 0 -4,-1.6 4,-2.2 1,-0.2 5,-0.5 0.914 105.7 64.9 -61.4 -43.2 5.3 -3.6 -4.6 72 72 A K H 3< S+ 0 0 38 -4,-2.0 -1,-0.2 1,-0.2 -2,-0.2 0.433 110.0 39.0 -65.1 3.3 5.8 -7.3 -4.0 73 73 A Q H <> S+ 0 0 120 -3,-1.2 4,-1.9 3,-0.1 5,-0.3 0.640 120.0 41.8-122.9 -44.5 7.7 -7.2 -7.3 74 74 A W H >X>S+ 0 0 73 -4,-2.5 4,-3.6 2,-0.2 3,-0.9 0.996 121.0 44.0 -63.8 -65.0 9.5 -3.9 -7.0 75 75 A R H 3<5S+ 0 0 21 -4,-2.2 6,-1.0 1,-0.3 -1,-0.2 0.579 119.4 46.5 -55.7 -11.0 10.3 -4.6 -3.3 76 76 A A H 345S+ 0 0 68 -5,-0.5 -1,-0.3 3,-0.2 -2,-0.2 0.719 118.2 37.4 -99.8 -26.2 11.2 -8.1 -4.5 77 77 A A H <<5S+ 0 0 93 -4,-1.9 -2,-0.2 -3,-0.9 -3,-0.2 0.796 122.7 42.9 -94.9 -35.6 13.3 -7.2 -7.4 78 78 A N T <5S- 0 0 89 -4,-3.6 -3,-0.2 -5,-0.3 -1,-0.2 0.490 110.5-138.0 -75.5 -13.2 14.8 -4.3 -5.6 79 79 A G < + 0 0 40 -5,-0.6 -3,-0.2 -6,-0.3 -4,-0.2 0.677 41.8 165.0 66.2 22.5 14.8 -6.9 -2.9 80 80 A K + 0 0 47 -6,-0.3 -4,-0.1 1,-0.1 2,-0.1 0.751 10.5 178.5 -35.7 -54.6 13.6 -4.2 -0.4 81 81 A S + 0 0 81 -6,-1.0 -1,-0.1 1,-0.1 3,-0.1 -0.353 27.4 122.6 64.3-166.1 12.6 -6.4 2.3 82 82 A G + 0 0 36 1,-0.4 2,-0.3 -2,-0.1 -72,-0.2 0.650 34.9 109.6 99.5 19.3 11.3 -4.6 5.3 83 83 A F - 0 0 31 1,-0.2 -1,-0.4 -74,-0.1 -72,-0.3 -0.661 63.6-108.5 -93.8 175.9 7.8 -5.7 6.2 84 84 A K B -a 11 0A 84 -74,-2.5 -72,-0.6 -77,-0.4 -1,-0.2 0.000 16.2-139.4 -73.8-175.7 6.8 -7.6 9.2 85 85 A Q 0 0 164 1,-0.5 -72,-0.3 -74,-0.2 -73,-0.2 0.721 360.0 360.0-118.3 -83.7 5.7 -11.1 9.4 86 86 A G 0 0 106 -75,-0.1 -1,-0.5 -74,-0.1 0, 0.0 -0.794 360.0 360.0 158.7 360.0 2.8 -11.8 11.7