==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SH3 DOMAIN 30-MAR-00 1E0L . COMPND 2 MOLECULE: FORMIN BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR M.J.MACIAS,V.GERVAIS,C.CIVERA,H.OSCHKINAT . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3201.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 37.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 128 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 140.5 -10.0 -8.5 -14.1 2 2 A A - 0 0 78 0, 0.0 3,-0.1 0, 0.0 0, 0.0 -0.762 360.0 -15.0-172.0 120.9 -9.1 -5.2 -12.5 3 3 A T S S+ 0 0 92 -2,-0.2 2,-1.4 1,-0.2 4,-0.0 0.828 78.4 154.5 50.6 34.1 -8.7 -4.1 -8.8 4 4 A A S S- 0 0 66 1,-0.1 -1,-0.2 0, 0.0 3,-0.1 -0.384 75.5 -78.2 -88.7 56.3 -10.6 -7.3 -8.0 5 5 A V S S+ 0 0 86 -2,-1.4 2,-0.3 1,-0.2 -1,-0.1 0.946 105.0 74.8 44.6 85.7 -9.0 -7.5 -4.5 6 6 A S + 0 0 78 29,-0.2 -1,-0.2 1,-0.0 3,-0.1 -0.967 37.1 89.0 170.6-172.1 -5.6 -8.9 -5.3 7 7 A E S S+ 0 0 97 -2,-0.3 16,-0.4 1,-0.2 2,-0.3 0.728 82.9 96.5 66.5 21.4 -2.2 -7.9 -6.8 8 8 A W - 0 0 36 14,-0.2 2,-0.4 15,-0.1 14,-0.2 -0.995 56.2-160.6-145.0 135.8 -1.1 -6.9 -3.2 9 9 A T E -A 21 0A 47 12,-1.5 12,-2.3 -2,-0.3 2,-0.3 -0.921 16.9-130.2-118.6 143.2 0.8 -8.7 -0.5 10 10 A E E -A 20 0A 107 -2,-0.4 2,-0.3 10,-0.2 10,-0.2 -0.650 23.9-176.5 -92.6 148.0 0.8 -7.8 3.3 11 11 A Y E -A 19 0A 116 8,-2.4 8,-2.2 -2,-0.3 2,-0.5 -0.997 18.5-137.6-144.1 144.5 4.0 -7.5 5.3 12 12 A K E -A 18 0A 149 -2,-0.3 6,-0.2 6,-0.2 2,-0.2 -0.901 18.1-154.3-108.0 128.1 4.7 -6.8 9.0 13 13 A T > - 0 0 37 4,-2.4 3,-1.8 -2,-0.5 4,-0.2 -0.541 31.7-109.4 -95.1 163.6 7.4 -4.4 10.1 14 14 A A T 3 S+ 0 0 110 1,-0.3 -1,-0.1 -2,-0.2 -2,-0.0 0.793 118.5 66.8 -60.0 -27.7 9.4 -4.4 13.3 15 15 A D T 3 S- 0 0 154 2,-0.1 -1,-0.3 1,-0.1 -3,-0.0 0.749 120.8-108.9 -65.3 -24.0 7.4 -1.3 14.2 16 16 A G S < S+ 0 0 58 -3,-1.8 2,-0.3 1,-0.3 -2,-0.2 0.744 74.6 131.3 98.7 31.4 4.3 -3.4 14.3 17 17 A K - 0 0 113 -4,-0.2 -4,-2.4 0, 0.0 2,-0.8 -0.888 52.3-137.7-117.6 148.3 2.6 -2.2 11.2 18 18 A T E +A 12 0A 41 -2,-0.3 -6,-0.2 -6,-0.2 2,-0.1 -0.869 31.6 173.5-107.3 102.0 1.0 -4.2 8.3 19 19 A Y E -A 11 0A 51 -8,-2.2 -8,-2.4 -2,-0.8 2,-0.3 -0.380 21.6-125.4 -98.8 178.5 1.9 -2.6 5.0 20 20 A Y E -AB 10 29A 24 9,-2.5 9,-2.3 -10,-0.2 2,-0.4 -0.917 11.0-159.5-128.9 155.6 1.3 -3.8 1.5 21 21 A Y E -AB 9 28A 60 -12,-2.3 -12,-1.5 -2,-0.3 2,-0.4 -0.924 15.8-140.7-138.5 112.9 3.4 -4.5 -1.6 22 22 A N E >> - B 0 27A 8 5,-3.5 5,-1.3 -2,-0.4 4,-1.0 -0.570 17.2-172.0 -71.6 122.3 2.0 -4.7 -5.1 23 23 A N T 45S+ 0 0 45 -2,-0.4 -1,-0.2 -16,-0.4 -15,-0.1 0.954 80.5 55.7 -80.1 -58.1 3.8 -7.6 -6.9 24 24 A R T 45S+ 0 0 182 1,-0.3 -1,-0.2 -17,-0.1 -2,-0.1 0.773 129.8 22.1 -45.4 -29.2 2.6 -7.2 -10.4 25 25 A T T 45S- 0 0 77 -18,-0.3 -1,-0.3 2,-0.1 -2,-0.2 0.594 100.2-133.6-112.6 -22.1 3.9 -3.6 -10.1 26 26 A L T <5 + 0 0 118 -4,-1.0 2,-0.5 1,-0.2 -3,-0.2 0.924 54.6 143.9 65.6 46.6 6.4 -4.1 -7.3 27 27 A E E < -B 22 0A 115 -5,-1.3 -5,-3.5 2,-0.0 -1,-0.2 -0.974 35.4-155.0-122.5 124.7 5.2 -1.1 -5.4 28 28 A S E +B 21 0A 68 -2,-0.5 2,-0.3 -7,-0.3 -7,-0.2 -0.586 17.4 170.5 -94.5 158.2 5.0 -0.9 -1.6 29 29 A T E -B 20 0A 41 -9,-2.3 -9,-2.5 -2,-0.2 -2,-0.0 -0.979 37.1-144.4-164.5 153.7 2.8 1.4 0.4 30 30 A W S S+ 0 0 150 -2,-0.3 2,-0.4 -11,-0.2 -1,-0.1 0.788 86.5 73.1 -90.3 -34.0 1.5 2.1 4.0 31 31 A E S S- 0 0 153 -11,-0.1 -11,-0.1 1,-0.1 -12,-0.0 -0.674 88.3-119.6 -85.6 134.3 -2.0 3.1 2.9 32 32 A K - 0 0 60 -2,-0.4 2,-1.2 1,-0.1 -2,-0.1 -0.458 17.6-124.9 -73.0 143.2 -4.3 0.2 1.8 33 33 A P - 0 0 31 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.256 44.1-106.7 -85.5 50.0 -5.6 0.5 -1.8 34 34 A Q S S+ 0 0 148 -2,-1.2 -29,-0.1 1,-0.2 3,-0.1 0.727 111.6 78.1 31.1 36.1 -9.3 0.2 -0.7 35 35 A E S S+ 0 0 42 -31,-0.1 -29,-0.2 -30,-0.0 -1,-0.2 0.092 70.2 75.4-153.9 24.1 -9.2 -3.3 -2.2 36 36 A L 0 0 24 -31,-0.1 -2,-0.1 -27,-0.0 -4,-0.0 -0.233 360.0 360.0-135.0 44.5 -7.4 -5.3 0.5 37 37 A K 0 0 211 -3,-0.1 0, 0.0 -5,-0.0 0, 0.0 -0.967 360.0 360.0-117.6 360.0 -10.0 -5.8 3.2