==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 01-APR-00 1E0M . COMPND 2 MOLECULE: WWPROTOTYPE; . SOURCE 2 EXPRESSION_SYSTEM: ESCHERICHIA COLI; . AUTHOR M.J.MACIAS,V.GERVAIS,C.CIVERA,H.OSCHKINAT . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3180.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 54.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 165 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 100.8 10.7 10.0 -6.6 2 2 A M + 0 0 190 3,-0.0 0, 0.0 2,-0.0 0, 0.0 0.975 360.0 159.5 54.6 62.9 11.2 6.5 -5.1 3 3 A G + 0 0 44 1,-0.1 5,-0.0 2,-0.1 0, 0.0 0.889 51.3 21.3 -77.7 -97.8 8.3 6.7 -2.7 4 4 A L S S- 0 0 41 4,-0.1 -1,-0.1 1,-0.1 6,-0.0 -0.358 100.2 -80.6 -71.9 154.8 6.9 3.4 -1.5 5 5 A P > - 0 0 55 0, 0.0 3,-1.4 0, 0.0 -1,-0.1 0.074 52.0 -91.7 -48.6 164.7 9.2 0.2 -1.6 6 6 A P T 3 S+ 0 0 133 0, 0.0 -2,-0.0 0, 0.0 3,-0.0 0.454 129.7 38.2 -63.1 2.7 9.6 -1.7 -4.9 7 7 A G T 3 S+ 0 0 0 1,-0.1 16,-1.9 15,-0.0 2,-0.6 0.445 95.5 90.2-129.7 -7.6 6.7 -3.8 -3.7 8 8 A W E < +A 22 0A 31 -3,-1.4 2,-0.3 14,-0.2 14,-0.2 -0.847 51.4 173.4 -99.3 118.2 4.4 -1.3 -2.1 9 9 A D E -A 21 0A 70 12,-2.1 12,-2.2 -2,-0.6 2,-0.4 -0.907 25.6-127.7-124.1 152.2 1.8 0.3 -4.4 10 10 A E E +A 20 0A 113 -2,-0.3 2,-0.3 10,-0.2 10,-0.2 -0.835 34.1 156.9-103.2 135.9 -1.1 2.6 -3.7 11 11 A Y E -A 19 0A 161 8,-2.0 8,-1.9 -2,-0.4 2,-0.5 -0.986 37.2-122.6-155.7 143.5 -4.7 2.0 -4.9 12 12 A K E -A 18 0A 142 -2,-0.3 6,-0.3 6,-0.3 5,-0.0 -0.785 27.7-153.0 -92.6 125.2 -8.2 3.0 -3.9 13 13 A T - 0 0 38 4,-2.0 -1,-0.1 -2,-0.5 5,-0.0 0.246 45.6 -62.9 -75.3-157.4 -10.6 0.2 -3.1 14 14 A H S S+ 0 0 186 1,-0.2 -2,-0.0 2,-0.1 0, 0.0 0.982 137.8 37.8 -55.9 -67.0 -14.4 0.3 -3.4 15 15 A N S S- 0 0 125 1,-0.1 -1,-0.2 2,-0.0 -3,-0.0 0.817 125.7-101.7 -56.7 -30.7 -15.2 3.0 -0.9 16 16 A G + 0 0 30 1,-0.2 2,-0.5 -5,-0.1 -2,-0.1 0.604 63.2 159.9 116.1 20.7 -12.1 4.8 -2.1 17 17 A K - 0 0 60 1,-0.1 2,-2.5 -5,-0.0 -4,-2.0 -0.631 43.7-131.2 -76.3 120.1 -9.5 4.0 0.6 18 18 A T E -A 12 0A 55 -2,-0.5 -6,-0.3 -6,-0.3 2,-0.3 -0.489 38.7-175.7 -71.2 74.9 -6.0 4.5 -0.9 19 19 A Y E -A 11 0A 65 -2,-2.5 -8,-2.0 -8,-1.9 2,-0.4 -0.588 17.1-140.8 -81.1 136.2 -4.8 1.1 0.4 20 20 A Y E -AB 10 29A 40 9,-1.9 9,-2.4 11,-0.3 2,-0.4 -0.786 17.5-163.7 -97.1 137.7 -1.2 0.1 -0.1 21 21 A Y E -AB 9 28A 72 -12,-2.2 -12,-2.1 -2,-0.4 2,-0.6 -0.965 12.7-145.1-126.8 142.4 -0.3 -3.4 -1.0 22 22 A N E >> -AB 8 27A 9 5,-1.8 5,-1.6 -2,-0.4 4,-0.8 -0.919 8.5-173.0-108.2 116.8 3.0 -5.4 -0.9 23 23 A H T 45S+ 0 0 82 -16,-1.9 -1,-0.1 -2,-0.6 -15,-0.1 0.251 82.7 64.9 -89.9 11.6 3.5 -7.9 -3.7 24 24 A N T 45S+ 0 0 107 -17,-0.2 -1,-0.2 3,-0.1 -16,-0.1 0.702 125.5 6.9-101.7 -29.1 6.7 -9.2 -2.0 25 25 A T T 45S- 0 0 93 -3,-0.3 -2,-0.2 -18,-0.1 -3,-0.0 0.189 104.9-108.3-136.7 11.1 5.0 -10.6 1.1 26 26 A K T <5 + 0 0 151 -4,-0.8 2,-0.5 1,-0.2 -3,-0.2 0.989 55.6 167.7 54.7 70.5 1.3 -10.1 0.2 27 27 A T E < -B 22 0A 38 -5,-1.6 -5,-1.8 2,-0.0 2,-0.6 -0.915 14.7-173.7-121.4 107.6 0.5 -7.3 2.6 28 28 A S E +B 21 0A 80 -2,-0.5 2,-0.3 -7,-0.2 -7,-0.2 -0.876 24.2 135.2-104.5 119.9 -2.8 -5.4 2.1 29 29 A T E -B 20 0A 21 -9,-2.4 -9,-1.9 -2,-0.6 -2,-0.0 -0.970 53.7-134.3-154.2 163.4 -3.4 -2.4 4.2 30 30 A W S S+ 0 0 157 -11,-0.3 2,-0.2 -2,-0.3 -12,-0.1 0.567 79.3 97.3 -97.2 -12.1 -4.7 1.2 4.0 31 31 A T S S- 0 0 65 -11,-0.1 -11,-0.3 1,-0.1 -2,-0.1 -0.487 88.9 -96.7 -78.5 147.5 -1.8 2.6 6.0 32 32 A D >> - 0 0 32 -2,-0.2 4,-0.9 1,-0.2 3,-0.7 -0.432 23.5-149.8 -65.3 127.8 1.2 4.2 4.3 33 33 A P T 34 S+ 0 0 21 0, 0.0 4,-0.2 0, 0.0 -1,-0.2 0.786 94.9 66.9 -69.0 -26.5 4.1 1.6 4.0 34 34 A R T 34 S+ 0 0 164 2,-0.1 -2,-0.1 -29,-0.1 3,-0.0 0.807 112.0 32.7 -62.9 -30.7 6.6 4.5 4.2 35 35 A M T <4 S- 0 0 146 -3,-0.7 2,-0.2 1,-0.1 -1,-0.0 0.879 125.6 -54.7 -89.1 -87.4 5.5 5.0 7.8 36 36 A S < 0 0 103 -4,-0.9 -4,-0.1 0, 0.0 -2,-0.1 -0.803 360.0 360.0-166.7 120.1 4.4 1.9 9.6 37 37 A S 0 0 95 -2,-0.2 -8,-0.0 -4,-0.2 -5,-0.0 -0.905 360.0 360.0-146.7 360.0 1.9 -0.8 8.8