==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 19-OCT-06 2E19 . COMPND 2 MOLECULE: TRANSCRIPTION FACTOR 8; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.OHNISHI,N.TOCHIO,S.KOSHIBA,T.HARADA,S.WATANABE,T.KIGAWA, . 64 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5110.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 65.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 46.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 126 0, 0.0 2,-0.6 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-173.2 8.8 -23.7 -0.6 2 2 A S + 0 0 133 2,-0.0 2,-0.4 0, 0.0 0, 0.0 -0.567 360.0 172.6 -72.5 115.9 10.9 -20.8 0.8 3 3 A S + 0 0 123 -2,-0.6 2,-0.1 2,-0.0 0, 0.0 -0.966 33.3 30.3-128.4 143.4 13.5 -19.9 -1.8 4 4 A G S S- 0 0 70 -2,-0.4 2,-0.4 2,-0.1 -2,-0.0 -0.374 77.2 -85.3 104.7 174.3 16.0 -17.1 -2.0 5 5 A S - 0 0 118 -2,-0.1 -2,-0.0 0, 0.0 -1,-0.0 -0.981 46.9 -97.0-129.3 122.6 17.8 -14.9 0.6 6 6 A S S S+ 0 0 143 -2,-0.4 -2,-0.1 1,-0.2 0, 0.0 -0.040 71.5 132.4 -36.0 108.9 16.4 -11.8 2.2 7 7 A G - 0 0 72 1,-0.3 -1,-0.2 0, 0.0 -3,-0.0 0.509 58.7 -10.8-126.6 -83.6 17.9 -9.1 0.1 8 8 A Q - 0 0 190 1,-0.1 -1,-0.3 0, 0.0 0, 0.0 -0.910 66.8-102.9-129.1 156.3 15.7 -6.2 -1.3 9 9 A P - 0 0 110 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.124 46.3 -87.2 -69.7 169.6 12.0 -5.5 -1.5 10 10 A P - 0 0 87 0, 0.0 2,-0.4 0, 0.0 5,-0.0 -0.037 55.5 -75.5 -69.8 177.6 9.8 -5.9 -4.6 11 11 A L >> - 0 0 112 1,-0.1 3,-2.7 4,-0.0 4,-0.5 -0.635 37.5-120.8 -81.4 130.8 9.3 -3.2 -7.3 12 12 A K H 3> S+ 0 0 149 -2,-0.4 4,-1.1 1,-0.3 3,-0.3 0.795 111.2 72.9 -36.0 -36.4 6.9 -0.4 -6.3 13 13 A N H >> S+ 0 0 102 1,-0.2 3,-1.0 2,-0.2 4,-0.8 0.906 86.6 62.1 -47.6 -48.9 4.9 -1.5 -9.3 14 14 A L H X> S+ 0 0 39 -3,-2.7 3,-2.3 1,-0.3 4,-0.8 0.925 94.5 59.6 -42.7 -61.0 3.8 -4.6 -7.4 15 15 A L H >X S+ 0 0 57 -4,-0.5 4,-2.2 1,-0.3 3,-1.5 0.847 94.0 67.4 -36.6 -46.8 2.0 -2.5 -4.8 16 16 A S H - 0 0 74 -2,-0.1 4,-2.9 4,-0.1 5,-0.1 -0.038 31.9 -91.6 -72.8-178.7 -11.1 -9.0 6.2 30 30 A A H > S+ 0 0 52 2,-0.2 4,-2.5 1,-0.2 5,-0.4 0.975 123.9 57.0 -59.8 -58.9 -9.0 -12.1 6.4 31 31 A E H > S+ 0 0 167 1,-0.3 4,-0.8 2,-0.2 -1,-0.2 0.838 116.0 39.7 -41.0 -40.5 -11.1 -14.2 4.0 32 32 A E H > S+ 0 0 68 2,-0.2 4,-3.1 3,-0.1 5,-0.3 0.904 113.3 54.1 -78.0 -44.5 -10.6 -11.4 1.5 33 33 A L H X S+ 0 0 13 -4,-2.9 4,-2.3 1,-0.2 -2,-0.2 0.967 106.0 50.9 -53.5 -60.5 -6.9 -10.8 2.3 34 34 A S H X S+ 0 0 67 -4,-2.5 4,-1.6 1,-0.2 -1,-0.2 0.861 115.2 46.2 -46.2 -41.2 -5.9 -14.4 1.8 35 35 A K H X S+ 0 0 129 -4,-0.8 4,-1.1 -5,-0.4 3,-0.3 0.986 107.7 52.1 -67.0 -60.9 -7.6 -14.3 -1.5 36 36 A I H X S+ 0 0 3 -4,-3.1 4,-1.5 1,-0.2 3,-0.3 0.803 108.1 57.9 -45.8 -32.3 -6.3 -11.0 -2.8 37 37 A A H >X>S+ 0 0 2 -4,-2.3 5,-1.9 -5,-0.3 4,-0.6 0.974 96.4 56.7 -64.3 -57.0 -2.9 -12.4 -2.0 38 38 A D H 3<5S+ 0 0 138 -4,-1.6 -1,-0.2 -3,-0.3 -2,-0.2 0.725 108.4 53.8 -47.8 -21.3 -3.1 -15.5 -4.2 39 39 A S H 3<5S+ 0 0 73 -4,-1.1 -1,-0.3 -3,-0.3 -2,-0.2 0.909 110.9 40.3 -81.2 -46.5 -3.7 -12.9 -6.9 40 40 A V H <<5S- 0 0 10 -4,-1.5 -2,-0.2 -3,-0.6 -1,-0.2 0.217 112.9-116.4 -86.9 15.2 -0.6 -10.8 -6.3 41 41 A N T <5S+ 0 0 150 -4,-0.6 -3,-0.2 1,-0.2 -4,-0.1 0.823 77.9 124.6 53.4 32.6 1.4 -14.0 -5.8 42 42 A L < - 0 0 38 -5,-1.9 -1,-0.2 -6,-0.2 -2,-0.2 -0.868 62.2-108.2-122.9 156.6 1.9 -12.8 -2.2 43 43 A P > - 0 0 55 0, 0.0 4,-0.8 0, 0.0 -1,-0.1 0.024 32.5-106.5 -69.8-177.9 1.3 -14.3 1.3 44 44 A L H > S+ 0 0 58 2,-0.2 4,-1.3 3,-0.1 -10,-0.1 0.700 117.3 52.2 -85.3 -21.6 -1.4 -13.3 3.7 45 45 A D H > S+ 0 0 80 2,-0.2 4,-2.2 1,-0.1 5,-0.2 0.925 106.6 49.7 -79.0 -48.7 1.1 -11.6 6.0 46 46 A V H > S+ 0 0 56 1,-0.2 4,-1.4 2,-0.2 -2,-0.2 0.850 115.3 46.0 -58.8 -35.5 2.8 -9.5 3.4 47 47 A V H X S+ 0 0 0 -4,-0.8 4,-2.0 2,-0.2 -1,-0.2 0.875 107.2 57.1 -75.2 -39.3 -0.6 -8.2 2.3 48 48 A K H X S+ 0 0 86 -4,-1.3 4,-2.6 2,-0.2 5,-0.2 0.927 106.0 50.7 -57.2 -47.9 -1.8 -7.6 5.8 49 49 A K H X S+ 0 0 96 -4,-2.2 4,-2.8 2,-0.2 5,-0.3 0.974 106.4 52.6 -54.5 -62.3 1.0 -5.3 6.6 50 50 A W H X S+ 0 0 13 -4,-1.4 4,-3.0 1,-0.2 9,-0.3 0.886 112.3 47.2 -40.2 -52.2 0.6 -3.1 3.5 51 51 A F H X S+ 0 0 5 -4,-2.0 4,-3.2 1,-0.2 5,-0.4 0.956 111.4 48.8 -57.0 -54.6 -3.1 -2.6 4.4 52 52 A E H X S+ 0 0 136 -4,-2.6 4,-0.8 1,-0.2 -1,-0.2 0.821 114.6 48.4 -55.8 -32.0 -2.3 -1.8 8.1 53 53 A K H X>S+ 0 0 80 -4,-2.8 5,-3.0 -5,-0.2 4,-1.3 0.905 114.8 43.0 -75.5 -43.7 0.3 0.7 6.7 54 54 A M H ><5S+ 0 0 13 -4,-3.0 3,-0.8 -5,-0.3 -2,-0.2 0.967 111.1 52.8 -66.6 -54.7 -2.0 2.3 4.2 55 55 A Q H 3<5S+ 0 0 88 -4,-3.2 -1,-0.2 1,-0.3 -2,-0.2 0.813 113.0 47.7 -51.0 -31.9 -5.1 2.5 6.5 56 56 A A H 3<5S- 0 0 73 -4,-0.8 -1,-0.3 -5,-0.4 -2,-0.2 0.779 122.6-107.9 -80.5 -29.0 -2.8 4.2 9.0 57 57 A G T <<5S+ 0 0 37 -4,-1.3 -3,-0.2 -3,-0.8 -2,-0.1 0.782 86.0 112.4 103.9 38.2 -1.4 6.6 6.4 58 58 A Q < + 0 0 125 -5,-3.0 3,-0.3 -8,-0.2 -4,-0.2 0.805 69.2 56.0-104.5 -47.8 2.1 5.3 5.8 59 59 A I S S+ 0 0 60 -6,-0.3 2,-0.3 1,-0.3 -5,-0.1 0.878 131.3 0.1 -53.5 -40.7 2.1 3.9 2.3 60 60 A S - 0 0 50 -7,-0.2 -1,-0.3 -6,-0.2 -2,-0.1 -0.857 57.9-146.9-156.9 116.0 0.9 7.3 1.0 61 61 A V S S+ 0 0 128 -3,-0.3 2,-1.0 -2,-0.3 -1,-0.1 0.780 97.0 67.1 -51.0 -27.8 0.3 10.5 3.0 62 62 A Q S S+ 0 0 168 -3,-0.1 2,-0.3 2,-0.0 -1,-0.2 -0.751 72.3 161.0-100.2 88.4 -2.5 11.2 0.5 63 63 A S 0 0 50 -2,-1.0 -2,-0.0 -8,-0.0 -8,-0.0 -0.770 360.0 360.0-108.5 153.8 -5.1 8.5 1.0 64 64 A S 0 0 160 -2,-0.3 -2,-0.0 -38,-0.0 0, 0.0 -0.997 360.0 360.0-137.3 360.0 -8.7 8.4 -0.0