==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 17-NOV-06 2E2S . COMPND 2 MOLECULE: AGELENIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ALLAGELENA OPULENTA; . AUTHOR N.YAMAJI . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2920.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 17.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 101 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -76.1 6.6 -4.2 11.5 2 2 A G + 0 0 69 14,-0.1 15,-0.2 2,-0.0 2,-0.1 0.960 360.0 0.4 -68.8 -84.4 8.4 -6.1 8.6 3 3 A a S S- 0 0 46 13,-0.1 15,-0.3 1,-0.1 17,-0.0 -0.259 93.6 -84.0 -93.4-172.8 6.0 -5.8 5.7 4 4 A L B -a 18 0A 22 13,-1.4 15,-0.5 -2,-0.1 4,-0.1 -0.835 44.6-124.4 -96.5 121.2 2.6 -4.1 5.6 5 5 A P > - 0 0 53 0, 0.0 3,-2.1 0, 0.0 29,-0.3 -0.243 42.4 -83.8 -60.2 148.0 -0.2 -6.3 6.9 6 6 A H T 3 S+ 0 0 92 1,-0.3 29,-0.1 27,-0.1 3,-0.1 -0.100 117.1 15.5 -50.1 152.8 -3.2 -6.8 4.4 7 7 A N T 3 S+ 0 0 111 27,-1.9 -1,-0.3 1,-0.2 2,-0.1 0.494 99.4 131.1 60.5 -2.6 -5.8 -4.0 4.5 8 8 A R S < S- 0 0 135 -3,-2.1 26,-2.9 1,-0.1 2,-0.9 -0.444 74.9 -93.9 -78.4 157.3 -3.1 -1.9 6.3 9 9 A F - 0 0 108 24,-0.2 2,-0.3 -3,-0.1 24,-0.2 -0.563 50.8-168.6 -72.3 107.3 -2.4 1.6 5.1 10 10 A b - 0 0 1 -2,-0.9 2,-0.7 22,-0.4 22,-0.2 -0.669 17.8-136.8 -97.0 154.4 0.6 1.1 2.8 11 11 A N - 0 0 63 5,-0.8 13,-0.0 -2,-0.3 22,-0.0 -0.844 10.8-169.3-112.5 98.7 2.7 4.0 1.3 12 12 A A S S+ 0 0 86 -2,-0.7 -1,-0.1 1,-0.1 3,-0.1 0.787 91.0 35.0 -55.5 -23.6 3.4 3.4 -2.4 13 13 A L S S+ 0 0 164 1,-0.3 2,-0.5 -3,-0.1 -2,-0.1 0.847 128.5 9.8 -95.9 -82.6 5.8 6.4 -2.0 14 14 A S S S+ 0 0 81 -4,-0.1 -1,-0.3 2,-0.0 -2,-0.1 -0.885 104.5 47.1-106.7 126.8 7.6 6.5 1.5 15 15 A G S S- 0 0 48 -2,-0.5 -5,-0.0 -3,-0.1 0, 0.0 -0.452 91.4 -54.4 129.0 157.5 7.3 3.6 3.9 16 16 A P - 0 0 81 0, 0.0 -5,-0.8 0, 0.0 2,-0.3 0.070 54.2-130.4 -54.1 170.9 7.6 -0.2 3.9 17 17 A R - 0 0 201 -15,-0.2 -13,-1.4 -7,-0.1 2,-0.1 -0.783 26.2 -85.8-123.5 169.2 5.5 -2.3 1.4 18 18 A c B -a 4 0A 15 -15,-0.3 6,-0.1 -2,-0.3 3,-0.1 -0.393 43.2-127.5 -72.8 153.3 3.3 -5.3 1.7 19 19 A a > - 0 0 65 -15,-0.5 3,-1.5 1,-0.2 -1,-0.1 -0.006 53.5 -45.3 -84.9-162.6 4.9 -8.8 1.6 20 20 A S T 3 S+ 0 0 122 1,-0.2 -1,-0.2 3,-0.0 3,-0.1 -0.406 127.3 33.2 -68.0 141.0 3.9 -11.6 -0.7 21 21 A G T 3 S+ 0 0 70 1,-0.2 2,-0.3 -3,-0.1 -1,-0.2 0.137 111.5 68.6 100.9 -20.7 0.1 -12.2 -0.9 22 22 A L < - 0 0 44 -3,-1.5 2,-0.3 13,-0.1 -1,-0.2 -0.913 59.4-168.1-128.6 158.1 -0.8 -8.5 -0.4 23 23 A K - 0 0 152 -2,-0.3 12,-6.9 -3,-0.1 2,-1.1 -0.998 31.7-108.6-144.7 148.4 -0.4 -5.4 -2.7 24 24 A b E -B 34 0B 48 -2,-0.3 2,-0.3 10,-0.3 10,-0.3 -0.625 39.9-167.7 -80.9 102.6 -0.7 -1.7 -2.2 25 25 A K E -B 33 0B 102 8,-3.0 8,-2.8 -2,-1.1 2,-0.4 -0.696 19.2-125.0 -90.2 139.8 -3.9 -0.8 -4.1 26 26 A E E -B 32 0B 117 -2,-0.3 6,-0.3 6,-0.3 3,-0.1 -0.691 22.3-175.8 -85.8 131.1 -4.7 2.9 -4.7 27 27 A L E - 0 0 80 4,-5.2 2,-0.3 -2,-0.4 5,-0.2 0.631 68.2 -28.4 -99.0 -16.3 -8.1 4.0 -3.5 28 28 A S E > S-B 31 0B 45 3,-1.6 3,-0.5 1,-0.1 -1,-0.1 -0.900 91.1 -55.3-170.6-161.0 -7.8 7.6 -4.8 29 29 A I T 3 S+ 0 0 142 -2,-0.3 -1,-0.1 1,-0.2 3,-0.0 0.930 138.1 13.4 -65.5 -41.8 -5.3 10.3 -5.7 30 30 A W T 3 S+ 0 0 205 -3,-0.1 2,-0.4 -4,-0.0 -1,-0.2 -0.097 111.4 91.6-124.7 36.9 -3.8 10.2 -2.2 31 31 A D E < +B 28 0B 33 -3,-0.5 -4,-5.2 2,-0.0 -3,-1.6 -0.952 41.1 157.7-135.3 119.0 -5.3 7.0 -0.7 32 32 A S E +B 26 0B 22 -2,-0.4 -22,-0.4 -6,-0.3 2,-0.3 -0.998 8.0 174.4-139.4 142.7 -3.6 3.6 -0.9 33 33 A R E -B 25 0B 112 -8,-2.8 -8,-3.0 -2,-0.3 2,-0.5 -0.989 46.1 -86.1-144.3 153.2 -4.1 0.4 1.2 34 34 A c E B 24 0B 0 -26,-2.9 -27,-1.9 -2,-0.3 -10,-0.3 -0.425 360.0 360.0 -62.6 116.2 -2.7 -3.2 1.0 35 35 A L 0 0 84 -12,-6.9 -13,-0.1 -2,-0.5 -2,-0.1 -0.500 360.0 360.0-162.3 360.0 -5.1 -5.0 -1.3