==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER APOPTOSIS 05-AUG-08 3E21 . COMPND 2 MOLECULE: FAS-ASSOCIATED FACTOR 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR J.K.PARK,E.E.KIM . 40 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2791.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 75.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 52.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 A M 0 0 142 0, 0.0 5,-0.2 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 -30.6 0.3 19.4 22.3 2 6 A D > - 0 0 84 3,-0.1 4,-1.8 1,-0.1 3,-0.2 0.990 360.0-165.9 59.1 77.0 1.5 16.3 24.2 3 7 A R H > S+ 0 0 114 1,-0.2 4,-2.8 2,-0.2 5,-0.2 0.753 80.9 65.2 -67.9 -23.3 2.4 14.4 21.1 4 8 A E H > S+ 0 0 149 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.943 106.4 42.4 -64.5 -45.1 2.6 11.1 23.1 5 9 A M H > S+ 0 0 92 -3,-0.2 4,-2.9 2,-0.2 -2,-0.2 0.905 113.4 52.7 -65.5 -42.7 -1.2 11.4 23.9 6 10 A I H X S+ 0 0 13 -4,-1.8 4,-2.6 2,-0.2 -2,-0.2 0.918 111.2 46.8 -59.8 -44.1 -1.9 12.4 20.3 7 11 A L H X S+ 0 0 30 -4,-2.8 4,-2.6 2,-0.2 5,-0.2 0.934 112.0 50.0 -64.5 -45.3 0.0 9.4 19.0 8 12 A A H X S+ 0 0 55 -4,-2.4 4,-2.3 1,-0.2 -2,-0.2 0.932 112.6 47.6 -58.4 -47.2 -1.7 7.0 21.4 9 13 A D H X S+ 0 0 67 -4,-2.9 4,-2.1 1,-0.2 5,-0.2 0.925 111.0 50.6 -59.8 -48.1 -5.1 8.4 20.4 10 14 A F H X S+ 0 0 0 -4,-2.6 4,-1.9 1,-0.2 6,-0.4 0.914 112.6 45.7 -58.6 -45.9 -4.3 8.1 16.7 11 15 A Q H X S+ 0 0 26 -4,-2.6 4,-2.0 1,-0.2 -1,-0.2 0.901 110.6 53.8 -66.1 -38.9 -3.2 4.5 16.9 12 16 A A H < S+ 0 0 89 -4,-2.3 -1,-0.2 -5,-0.2 -2,-0.2 0.878 117.0 36.7 -62.8 -38.8 -6.2 3.5 19.1 13 17 A C H < S+ 0 0 83 -4,-2.1 -1,-0.2 -5,-0.2 -2,-0.2 0.719 123.4 38.2 -89.0 -23.1 -8.7 4.9 16.6 14 18 A T H < S- 0 0 30 -4,-1.9 -3,-0.2 -5,-0.2 -2,-0.2 0.678 92.6-130.2-102.3 -21.5 -7.0 4.0 13.3 15 19 A G < + 0 0 50 -4,-2.0 2,-1.3 -5,-0.3 -4,-0.1 0.574 59.5 141.0 81.7 6.7 -5.5 0.6 14.0 16 20 A I + 0 0 40 -6,-0.4 -1,-0.2 1,-0.2 -2,-0.1 -0.713 21.5 172.7 -85.9 95.2 -2.2 1.7 12.6 17 21 A E + 0 0 136 -2,-1.3 2,-0.7 -3,-0.1 -1,-0.2 0.641 46.1 100.1 -79.3 -17.2 0.1 0.0 15.2 18 22 A N > - 0 0 91 1,-0.2 4,-2.4 -3,-0.1 5,-0.2 -0.616 62.3-155.9 -73.6 114.7 3.4 0.8 13.3 19 23 A I H > S+ 0 0 95 -2,-0.7 4,-2.8 1,-0.2 5,-0.2 0.889 88.9 51.4 -60.1 -44.3 4.8 3.9 15.2 20 24 A D H > S+ 0 0 103 1,-0.2 4,-2.3 2,-0.2 -1,-0.2 0.929 112.6 46.8 -61.2 -42.8 6.9 5.2 12.4 21 25 A E H > S+ 0 0 99 2,-0.2 4,-2.2 1,-0.2 -1,-0.2 0.921 112.6 50.1 -63.9 -42.8 3.9 5.1 10.0 22 26 A A H X S+ 0 0 0 -4,-2.4 4,-2.3 1,-0.2 -2,-0.2 0.918 111.8 47.6 -62.8 -42.9 1.7 6.7 12.6 23 27 A I H X S+ 0 0 46 -4,-2.8 4,-2.6 2,-0.2 -1,-0.2 0.895 109.6 53.1 -66.1 -39.0 4.1 9.6 13.3 24 28 A T H X S+ 0 0 44 -4,-2.3 4,-1.9 -5,-0.2 -1,-0.2 0.937 111.2 46.5 -61.3 -45.0 4.6 10.2 9.5 25 29 A L H X S+ 0 0 49 -4,-2.2 4,-0.6 1,-0.2 -2,-0.2 0.897 112.4 50.0 -64.5 -40.3 0.8 10.5 9.1 26 30 A L H ><>S+ 0 0 0 -4,-2.3 5,-3.5 1,-0.2 3,-0.8 0.897 109.4 51.4 -65.8 -39.1 0.6 12.8 12.1 27 31 A E H ><5S+ 0 0 109 -4,-2.6 3,-1.6 1,-0.2 -1,-0.2 0.867 105.3 55.9 -64.7 -36.6 3.4 15.0 10.8 28 32 A Q H 3<5S+ 0 0 142 -4,-1.9 -1,-0.2 1,-0.3 -2,-0.2 0.669 110.6 46.1 -69.4 -16.5 1.6 15.3 7.4 29 33 A N T X<5S- 0 0 48 -3,-0.8 3,-2.1 -4,-0.6 -1,-0.3 0.097 118.6-110.4-111.4 19.5 -1.4 16.6 9.3 30 34 A N T < 5 - 0 0 139 -3,-1.6 -3,-0.2 1,-0.3 3,-0.1 0.843 68.1 -68.5 54.0 37.1 0.6 19.0 11.5 31 35 A W T 3 - 0 0 87 -3,-2.1 4,-2.5 -6,-0.4 3,-0.3 -0.772 34.2-160.6 -87.8 102.5 -3.8 17.8 14.3 33 37 A L H > S+ 0 0 38 -2,-1.1 4,-2.5 1,-0.2 5,-0.2 0.882 85.7 55.0 -51.2 -46.9 -5.4 14.6 15.6 34 38 A V H > S+ 0 0 92 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.918 112.1 43.7 -55.2 -46.3 -8.8 15.4 14.1 35 39 A A H 4 S+ 0 0 34 -3,-0.3 -1,-0.2 -6,-0.2 -2,-0.2 0.913 112.1 51.7 -67.0 -44.7 -7.4 15.8 10.6 36 40 A A H >< S+ 0 0 3 -4,-2.5 3,-1.1 -7,-0.2 4,-0.3 0.910 111.6 47.2 -60.3 -43.8 -5.1 12.8 10.8 37 41 A I H >< S+ 0 0 44 -4,-2.5 3,-2.2 1,-0.3 -2,-0.2 0.962 110.4 49.4 -63.5 -53.5 -7.9 10.4 11.8 38 42 A N T 3< S+ 0 0 133 -4,-2.0 -1,-0.3 1,-0.3 -2,-0.2 0.263 104.4 66.4 -71.7 17.0 -10.5 11.6 9.2 39 43 A G T < 0 0 58 -3,-1.1 -1,-0.3 -5,-0.1 -2,-0.2 0.478 360.0 360.0-112.2 -9.7 -7.7 11.1 6.8 40 44 A V < 0 0 108 -3,-2.2 -3,-0.0 -4,-0.3 0, 0.0 -0.663 360.0 360.0 -93.7 360.0 -7.5 7.3 7.1