==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 11-AUG-08 3E4H . COMPND 2 MOLECULE: VARV PEPTIDE F; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ARVENSIS; . AUTHOR S.H.HU . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2092.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 11 37.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 27.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 18 0, 0.0 28,-0.1 0, 0.0 22,-0.1 0.000 360.0 360.0 360.0 -15.9 17.3 -4.2 8.4 2 2 A G + 0 0 88 20,-0.2 2,-0.4 1,-0.2 21,-0.1 0.808 360.0 118.7 59.8 28.8 19.9 -1.7 9.6 3 3 A E - 0 0 40 19,-0.3 19,-2.4 9,-0.0 2,-0.2 -0.988 53.1-153.4-132.7 134.6 19.4 -0.0 6.3 4 4 A T B -A 21 0A 98 -2,-0.4 17,-0.3 17,-0.2 3,-0.1 -0.677 3.4-157.7 -98.7 158.4 18.3 3.4 5.2 5 5 A b > + 0 0 4 15,-2.7 3,-2.1 -2,-0.2 16,-0.1 -0.443 28.3 155.0-135.4 61.5 16.7 4.1 1.8 6 6 A T T 3 S+ 0 0 94 1,-0.3 -1,-0.1 14,-0.1 15,-0.1 0.789 80.3 49.8 -60.2 -27.8 17.1 7.8 1.2 7 7 A L T 3 S- 0 0 170 2,-0.2 -1,-0.3 -3,-0.1 3,-0.1 0.226 124.5-101.7 -96.5 15.1 16.9 7.2 -2.6 8 8 A G S < S+ 0 0 39 -3,-2.1 2,-0.4 1,-0.1 9,-0.3 0.371 87.4 90.0 88.9 -3.2 13.7 5.1 -2.2 9 9 A T - 0 0 74 7,-0.1 2,-0.4 -5,-0.1 -2,-0.2 -0.975 53.7-151.1-134.0 144.5 14.9 1.5 -2.4 10 10 A c - 0 0 18 -2,-0.4 7,-0.1 5,-0.2 4,-0.1 -0.858 6.6-174.2-108.3 145.0 16.1 -1.2 -0.0 11 11 A Y + 0 0 192 -2,-0.4 2,-0.2 2,-0.1 -1,-0.1 0.517 51.6 106.0-115.6 -10.7 18.5 -3.9 -1.0 12 12 A T S > S- 0 0 52 1,-0.1 3,-2.2 2,-0.1 -2,-0.1 -0.535 88.4 -92.5 -70.8 135.9 18.6 -6.1 2.1 13 13 A A T 3 S+ 0 0 86 1,-0.3 -1,-0.1 -2,-0.2 3,-0.1 -0.231 107.2 6.1 -53.3 129.1 16.6 -9.3 1.4 14 14 A G T 3 S+ 0 0 63 1,-0.3 11,-0.3 -4,-0.1 2,-0.3 0.461 100.8 123.7 78.1 1.5 13.0 -9.0 2.4 15 15 A a < - 0 0 13 -3,-2.2 2,-0.3 9,-0.1 -1,-0.3 -0.729 39.6-167.5 -99.6 146.2 13.2 -5.3 3.3 16 16 A S E -B 23 0A 78 7,-2.7 7,-2.9 -2,-0.3 2,-0.5 -0.938 28.0-101.2-128.8 152.5 11.0 -2.6 1.8 17 17 A b E +B 22 0A 42 -2,-0.3 2,-0.5 -9,-0.3 5,-0.2 -0.620 31.1 172.5 -84.8 124.9 11.3 1.2 2.0 18 18 A S E > -B 21 0A 62 3,-2.9 3,-2.4 -2,-0.5 -13,-0.1 -0.801 67.2 -81.6-121.1 76.3 9.2 3.2 4.4 19 19 A W T 3 S+ 0 0 174 -2,-0.5 -13,-0.1 1,-0.4 -15,-0.0 0.132 112.0 5.8 -30.3 125.6 11.1 6.4 3.5 20 20 A P T 3 S+ 0 0 55 0, 0.0 -15,-2.7 0, 0.0 -1,-0.4 -0.933 126.5 55.9-101.8 19.9 13.6 6.9 4.8 21 21 A V E < -AB 4 18A 61 -3,-2.4 -3,-2.9 -17,-0.3 2,-0.3 -0.856 69.8-126.9-114.6 145.9 14.0 3.6 6.7 22 22 A c E - B 0 17A 1 -19,-2.4 2,-0.3 -2,-0.4 -19,-0.3 -0.668 30.6-169.2 -85.3 137.7 14.0 -0.0 5.5 23 23 A T E - B 0 16A 20 -7,-2.9 -7,-2.7 -2,-0.3 2,-0.4 -0.923 17.4-166.5-130.0 154.5 11.5 -2.3 7.2 24 24 A R B > S-C 27 0B 87 3,-2.7 3,-1.8 -2,-0.3 5,-0.2 -0.993 85.9 -0.1-136.9 128.5 10.9 -6.1 7.3 25 25 A N T 3 S- 0 0 152 -2,-0.4 -1,-0.1 -11,-0.3 -10,-0.1 0.869 134.6 -58.8 58.6 33.8 7.7 -7.4 8.8 26 26 A G T 3 S+ 0 0 65 1,-0.2 -1,-0.3 -10,-0.0 -11,-0.0 0.452 119.4 97.7 76.7 1.4 6.8 -3.8 9.4 27 27 A V B < S-C 24 0B 65 -3,-1.8 -3,-2.7 2,-0.0 2,-2.1 -0.942 80.0-115.2-126.5 147.1 9.8 -3.0 11.6 28 28 A P 0 0 89 0, 0.0 -5,-0.2 0, 0.0 -26,-0.2 -0.472 360.0 360.0 -77.4 73.2 13.2 -1.4 10.9 29 29 A I 0 0 92 -2,-2.1 -6,-0.1 -5,-0.2 -14,-0.0 0.018 360.0 360.0-113.6 360.0 15.3 -4.4 11.6